Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 141–149 | Cite as

Silver and Sodium Fluorescein Co-doped Phosphomolybdate Microspindle: Synthesis and Spectroscopic Properties

  • Ruru Meng
  • Xiaomei He
  • Jingjing Chen
  • Jing Yang
  • Guan WangEmail author
Original Paper
  • 38 Downloads

Abstract

A novel phosphomolybdate material has been prepared using chemical precipitation method by means of doping silver ion and sodium fluorescein. This hybrid material exhibits extremely rare spindle morphology in polyoxometalate based materials. Control experiments are carried out to explore the impact factors of this peculiar shape in self-assembly process. Interestingly, the microspindle exhibits a dual-emission spectrum with the peaks centered at 467 and 512 nm, corresponding to the phosphomolybdate and sodium fluorescein related photoluminescence, respectively. Therefore, the successful preparations in this work not only enrich the structural diversity, but also provide us with an enlightening synthetic strategy for the functionalization of polyoxometalate based materials.

Keywords

Polyoxometalate Microspindle Dual-emission Spectroscopic materials 

Notes

Acknowledgements

This work was supported by the NSFC-Henan Joint Fund of China (U1504201), the Basic and Frontier Technology Research Plan of Henan Province (152300410192), 2017 Henan Postdoctoral Science Foundation. The authors gratefully acknowledge Qiangsheng Wang for the ESI–MS characterization and Chaofeng He from shiyanjia lab for the test of XPS, TEM and TG–DTA tests (www.shiyanjia.com).

Supplementary material

10876_2018_1470_MOESM1_ESM.docx (163 kb)
Supplementary material 1 (DOCX 163 kb)

References

  1. 1.
    T. Yamase (1998). Chem. Rev. 98, 307–325.CrossRefGoogle Scholar
  2. 2.
    D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105–121.CrossRefGoogle Scholar
  3. 3.
    H. N. Miras, J. Yan, D. L. Long, and L. Cronin (2012). Chem. Soc. Rev. 41, 7403–7430.CrossRefGoogle Scholar
  4. 4.
    N. Mizuno, K. Yamaguchi, and K. Kamata (2005). Coord. Chem. Rev. 249, 1944–1956.CrossRefGoogle Scholar
  5. 5.
    Y. F. Song and R. Tsunashima (2012). Chem. Soc. Rev. 41, 7384–7402.CrossRefGoogle Scholar
  6. 6.
    L. J. Zhang and T. J. Webster (2009). Nanotoday 4, 66–80.CrossRefGoogle Scholar
  7. 7.
    D. G. Kurth, P. Lehmann, D. Volkmer, A. Müller, and D. Schwahn (2000). Dalton Trans. 21, 3989–3998.CrossRefGoogle Scholar
  8. 8.
    P. C. Yin, D. Li, and T. B. Liu (2012). Chem. Soc. Rev. 41, 7368–7383.CrossRefGoogle Scholar
  9. 9.
    A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, P. Kögerler, C. Rosu, and E. B. Dipl (2001). Angew. Chem. 113, 4158–4161.CrossRefGoogle Scholar
  10. 10.
    T. Ito, K. Inumaru, and M. Misono (2001). Chem. Mater. 13, 824–831.CrossRefGoogle Scholar
  11. 11.
    Y. Shen, J. Peng, H. Q. Zhang, and X. Yu (2012). Inorg. Chem. 51, 5146–5151.CrossRefGoogle Scholar
  12. 12.
    T. B. Liu, E. Diemann, H. L. Li, and A. W. M. Dress (2003). Nature 426, 59–62.CrossRefGoogle Scholar
  13. 13.
    D. Li, J. Song, P. C. Yin, S. Simotwo, A. J. Bassler, Y. Y. Aung, J. E. Roberts, K. I. Hardcastle, C. L. Hill, and T. B. Liu (2011). J. Am. Chem. Soc. 133, 14010–14016.CrossRefGoogle Scholar
  14. 14.
    P. C. Yin, D. Li, and T. B. Liu (2012). Chem. Soc. Rev. 41, 7368–7383.CrossRefGoogle Scholar
  15. 15.
    Z. H. Kang, E. B. Wang, M. Jiang, S. Y. Lian, Y. G. Li, and C. W. Hu (2003). Eur. J. Inorg. Chem. 2, 370–376.CrossRefGoogle Scholar
  16. 16.
    Z. H. Kang, E. B. Wang, M. Jiang, and S. Y. Lian (2004). Nanotechnology 15, 55–58.CrossRefGoogle Scholar
  17. 17.
    K. Inumaru (2006). Catal. Surv. Asia 10, 151–160.CrossRefGoogle Scholar
  18. 18.
    Z. F. Xin, J. Peng, T. Wang, B. Xue, Y. M. Kong, L. Li, and E. B. Wang (2006). Inorg. Chem. 45, 8856–8858.CrossRefGoogle Scholar
  19. 19.
    Y. Shen, J. Peng, H. J. Pang, P. P. Zhang, D. Chen, C. Y. Chen, H. Q. Zhang, C. L. Meng, and Z. M. Su (2011). Chem. Eur. J. 17, 3657–3662.CrossRefGoogle Scholar
  20. 20.
    Y. Shen, J. Peng, C. Y. Chen, H. Q. Zhang, C. L. Meng, and X. L. Li (2011). Chem. Commun. 14, 221–224.Google Scholar
  21. 21.
    H. Q. Zhang, J. Peng, Y. Shen, X. Yu, F. Zhang, J. L. Mei, B. Li, and L. M. Zhang (2012). Chem. Commun. 48, 4462–4464.CrossRefGoogle Scholar
  22. 22.
    Y. Shen, J. Peng, H. Q. Zhang, C. L. Meng, and F. Zhang (2012). J. Solid State Chem. 185, 225–228.CrossRefGoogle Scholar
  23. 23.
    K. Okamoto, S. Uchida, T. Ito, and N. Mizuno (2007). J. Am. Chem. Soc. 129, 7378–7384.CrossRefGoogle Scholar
  24. 24.
    Y. Ogasawara, S. Uchida, T. Maruichi, R. Ishikawa, N. Shibata, Y. Ikuhara, and N. Mizuno (2013). Chem. Mater. 25, 905–911.CrossRefGoogle Scholar
  25. 25.
    J. Z. He, H. Pang, W. Q. Wang, Y. Zhang, B. Yan, X. R. Li, and S. J. Li (2013). Dalton Trans. 42, 15637–15644.CrossRefGoogle Scholar
  26. 26.
    K. Bhattacharjee, K. K. Chattopadhyay, and G. C. Das (2015). J. Phys. Chem. C 119, 1536–1547.CrossRefGoogle Scholar
  27. 27.
    R. R. Meng, Q. Li, G. Wang, and J. Y. Niu (2018). Mater. Chem. Phys. 207, 186–193.CrossRefGoogle Scholar
  28. 28.
    G. Wang, Y. K. Wang, R. R. Meng, X. X. Xu, and J. Y. Niu (2018). Dalton Trans. 47, 7730–7738.CrossRefGoogle Scholar
  29. 29.
    S. Tadepalli, J. M. Slocik, M. K. Gupta, R. R. Naik, and S. Singamaneni (2017). Chem. Rev. 117, 12705–12763.CrossRefGoogle Scholar
  30. 30.
    O. Ostroverkhova (2016). Chem. Rev. 116, 13279–13412.CrossRefGoogle Scholar
  31. 31.
    G. Wang, J. W. Ji, and X. X. Xu (2014). J. Mater. Chem. C 2, 1977–1981.CrossRefGoogle Scholar
  32. 32.
    J. H. Choi, J. K. Kim, D. R. Park, S. Park, J. Yi, and I. K. Song (2011). Catal. Commun. 14, 48–51.CrossRefGoogle Scholar
  33. 33.
    D. P. Bhopate, P. G. Mahajan, K. M. Garadkar, G. B. Kolekar, and S. R. Patil (2015). Luminescence 32, 1055–1063.CrossRefGoogle Scholar
  34. 34.
    T. Okuhara, N. Mizuno, and M. Misono (1996). Adv. Catal. 41, 113–252.Google Scholar
  35. 35.
    Y. H. Feng, Z. G. Han, J. Peng, J. Lu, B. Xue, L. Li, H. Y. Ma, and E. B. Wang (2006). Mater. Lett. 60, 1588–1593.CrossRefGoogle Scholar
  36. 36.
    B. F. Chen, F. B. Li, Z. J. Huang, T. Lu, Y. Yuan, J. L. Yu, and G. Q. Yuan (2012). RSC Adv. 2, 11449–11456.CrossRefGoogle Scholar
  37. 37.
    H. N. Miras, E. F. Wilsonw, and L. Cronin (2009). Chem. Commun. 11, 1297–1311.CrossRefGoogle Scholar
  38. 38.
    J. H. Son, C. A. Ohlin, R. L. Johnson, P. Yu, and W. H. Casey (2013). Chem. Eur. J. 19, 5191–5197.CrossRefGoogle Scholar
  39. 39.
    S. Pant, H. B. Tripathi, and D. D. Pant (1994). J. Photochem. Photobio. A 81, 7–11.CrossRefGoogle Scholar
  40. 40.
    A. D. Matuszek, A. S. A. Karocki, G. Stochel, and L. Fiedor (2005). Inorg. Chem. 10, 453–462.Google Scholar
  41. 41.
    J. Vestfrid, M. Botoshansky, J. H. Palmer, A. C. Durrell, H. B. Gray, and Z. Gross (2011). J. Am. Chem. Soc. 133, 12899–12901.CrossRefGoogle Scholar
  42. 42.
    L. L. Li, Y. L. Liu, R. Q. Li, Z. H. Leng, and S. C. Gan (2015). RSC Adv. 5, 7049–7057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ruru Meng
    • 1
  • Xiaomei He
    • 1
  • Jingjing Chen
    • 1
  • Jing Yang
    • 1
  • Guan Wang
    • 1
    Email author
  1. 1.Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina

Personalised recommendations