Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 1–4 | Cite as

Rapid Size-Focusing of Gold Nanoclusters with an Oxidant

  • Elumalai Kumaran
  • Weng Kee LeongEmail author
Brief Communication
  • 90 Downloads

Abstract

Rapid size-focusing of gold nanoclusters can be achieved by the addition of K3[Fe(CN)]6. The conditions for this have been optimized, and the possible role that it plays proposed.

Keywords

Gold Nanocluster Size-focusing Oxidant 

Notes

Acknowledgements

This work was supported by a research grant (SERC Grant No. 1521200076) from the Agency for Science, Technology and Research (A*STAR), Singapore.

Supplementary material

10876_2018_1469_MOESM1_ESM.pdf (552 kb)
Supplementary material 1 (PDF 551 kb)

References

  1. 1.
    W. P. McConnell, J. P. Novak, L. C. Brousseau III, R. R. Fuierer, R. C. Tenent, and D. L. Feldheim (2000). J. Phys. Chem. B. 104, 8925.CrossRefGoogle Scholar
  2. 2.
    N. Zheng and G. D. Stucky (2006). J. Am. Chem. Soc. 128, 14278.CrossRefGoogle Scholar
  3. 3.
    V. Chechik and R. M. Crooks (1999). Langmuir 15, 6364.CrossRefGoogle Scholar
  4. 4.
    T. Gu, J. K. Whitesell, and M. A. Fox (2003). Chem. Mater. 15, 1358.CrossRefGoogle Scholar
  5. 5.
    E. S. Shibu, M. A. H. Muhammed, T. Tsukuda, and T. Pradeep (2008). J. Phys. Chem. C 112, 12168.CrossRefGoogle Scholar
  6. 6.
    H. Wohltjen and S. W. Snow (1998). Anal. Chem. 70, 2856.CrossRefGoogle Scholar
  7. 7.
    N. L. Rosi and C. A. Mirkin (2005). Chem. Rev. 105, 1547.CrossRefGoogle Scholar
  8. 8.
    C. J. Ackerson, P. D. Jadzinsky, D. J. Jensen, and R. D. Kornberg (2006). J. Am. Chem. Soc. 128, 2635.CrossRefGoogle Scholar
  9. 9.
    D. W. Grainger and D. G. Castner (2008). Adv. Mater. 20, 867.CrossRefGoogle Scholar
  10. 10.
    R. Jin (2015). Nanoscale 7, 1549.CrossRefGoogle Scholar
  11. 11.
    A. Dass (2012). Nanoscale 4, 2260.CrossRefGoogle Scholar
  12. 12.
    M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Gronbeck, and H. Hakkinen (2008). Proc. Natl. Acad. Sci. U. S. A. 105, 9157.CrossRefGoogle Scholar
  13. 13.
    G. Li and R. Jin (2013). Acc. Chem. Res. 46, 1749.CrossRefGoogle Scholar
  14. 14.
    S. Yamazoe, K. Koyasu, and T. Tsukuda (2013). Acc. Chem. Res. 47, 816.CrossRefGoogle Scholar
  15. 15.
    S. H. Yau, O. Varnavski, and T. Goodson (2013). Acc. Chem. Res. 46, 1506.CrossRefGoogle Scholar
  16. 16.
    S. Knoppe and T. Bürgi (2014). Acc. Chem. Res. 47, 1318.CrossRefGoogle Scholar
  17. 17.
    P. Zhang (2014). J. Phys. Chem. C 118, 2529.Google Scholar
  18. 18.
    W. Kurashige, Y. Niihori, S. Sharma, and Y. Negishi (2014). J. Phys. Chem. Lett. 5, 4134.CrossRefGoogle Scholar
  19. 19.
    Y. Yu, Q. Yao, Z. Luo, X. Yuan, J. Y. Lee, and J. Xie (2013). Nanoscale 5, 4606.CrossRefGoogle Scholar
  20. 20.
    Y. Pei and X. C. Zeng (2012). Nanoscale 4, 4054.CrossRefGoogle Scholar
  21. 21.
    D.-E. Jiang (2013). Nanoscale 5, 7149.CrossRefGoogle Scholar
  22. 22.
    A. Fernando, K. L. D. M. Weerawardene, N. V. Karimova, and C. M. Aikens (2015). Chem. Rev. 115, 6112.CrossRefGoogle Scholar
  23. 23.
    M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman (1994). J. Chem. Soc. Chem. Commun.  https://doi.org/10.1039/c39940000801.Google Scholar
  24. 24.
    S. Sharma, W. Kurashige, K. Nobusada, and Y. Negishi (2015). Nanoscale 7, 10606.CrossRefGoogle Scholar
  25. 25.
    J. I. Nishigaki, S. Yamazoe, S. Kohara, A. Fujiwara, W. Kurashige, Y. Negishi, and T. Tsukuda (2014). Chem. Commun. 50, 839.CrossRefGoogle Scholar
  26. 26.
    A. Mathew and T. Pradeep (2014). Part. Part. Syst. Charact. 31, 1017.CrossRefGoogle Scholar
  27. 27.
    X. Yuan, X. Y. Dou, K. Y. Zheng, and J. P. Xie (2015). Part. Part. Syst. Charact. 32, 613.CrossRefGoogle Scholar
  28. 28.
    C. P. Joshi, M. S. Bootharaju, and O. M. Bakr (2015). J. Phys. Chem. Lett. 6, 3023.CrossRefGoogle Scholar
  29. 29.
    R. Jin, Y. Zhu, and H. Qian (2011). Chem. Eur. J. 17, 6584.CrossRefGoogle Scholar
  30. 30.
    R. Jin, H. Qian, Y. Zhu, and A. J. Das (2011). Nanosci. Lett. 1, 72.Google Scholar
  31. 31.
    Z. Wu, M. A. MacDonald, J. Chen, P. Zhang, and R. Jin (2011). J. Am. Chem. Soc. 133, 9670.CrossRefGoogle Scholar
  32. 32.
    L. O. Brown and J. E. Hutchison (1999). J. Am. Chem. Soc. 121, 882.CrossRefGoogle Scholar
  33. 33.
    Y. Shichibu, Y. Negishi, T. Tsukuda, and T. Teranishi (2005). J. Am. Chem. Soc. 127, 13464.CrossRefGoogle Scholar
  34. 34.
    Y. Shichibu, Y. Negishi, T. Watanabe, N. K. Chaki, H. Kawaguchi, and T. Tsukuda (2007). J. Phys. Chem. C 111, 7845.CrossRefGoogle Scholar
  35. 35.
    P. Reddy and A. Dass (2011). J. Am. Chem. Soc. 133, 9175.CrossRefGoogle Scholar
  36. 36.
    C. Zeng, H. Qian, T. Li, G. Li, N. L. Rosi, B. Yoon, R. N. Barnett, R. L. Whetten, U. Landman, and R. Jin (2012). Angew. Chem. Int. Ed. 51, 13114.CrossRefGoogle Scholar
  37. 37.
    C. Zeng, C. Liu, Y. Pei, and R. Jin (2013). ACS Nano 7, 6138.CrossRefGoogle Scholar
  38. 38.
    A. Das, C. Liu, C. Zeng, G. Li, T. Li, N. L. Rosi, and R. Jin (2014). J. Phys. Chem. A 118, 8264.CrossRefGoogle Scholar
  39. 39.
    P. R. Nimmala, S. Knoppe, V. R. Jupally, J. H. Delcamp, C. M. Aikens, and A. Dass (2014). J. Phys. Chem. B 118, 14157.CrossRefGoogle Scholar
  40. 40.
    L. Liao, C. Yao, C. Wang, S. Tian, J. Chen, M.-B. Li, N. Xia, N. Yan, and Z. Wu (2016). Anal. Chem. 88, 11297.CrossRefGoogle Scholar
  41. 41.
    S. Theivendran and A. Dass (2017). Langmuir 33, 7446.CrossRefGoogle Scholar
  42. 42.
    Z. Yang, L. Zhimin, Z. Kai, and L. Gao (2018). Acta Phys. Chem. Sin. 34, 786.Google Scholar
  43. 43.
    H. Qian and R. Jin (2009). Nano Lett. 9, 4083.CrossRefGoogle Scholar
  44. 44.
    H. Qian, Y. Zhu, and R. Jin (2009). ACS Nano 3, 3795.CrossRefGoogle Scholar
  45. 45.
    Z. Wu, J. Suhan, and R. Jin (2009). J. Mater. Chem. 19, 622.CrossRefGoogle Scholar
  46. 46.
    Z. Chenjie, C. Yuxiang, D. Anindita, and J. Rongchao (2015). Phys. Chem. Lett. 6, 2976.CrossRefGoogle Scholar
  47. 47.
    R. Milan and A. Dass (2017). Langmuir 33, 10958.CrossRefGoogle Scholar
  48. 48.
    D. S. Yarramala, A. Baski, T. Pradeep, and C. P. Rao (2017). ACS Sustainable Chem. Eng. 5, 6064.CrossRefGoogle Scholar
  49. 49.
    Y. Zhou, Z. Li, K. Zheng, and G. Li (2018). Acta Phys. -Chim. Sin. 34, 786.Google Scholar
  50. 50.
    R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu, A. Mohanty, and N. Garg (2010). J. Phys. Chem. Lett. 1, 2903.CrossRefGoogle Scholar
  51. 51.
    L. M. Tvedte and C. J. Ackerson (2014). J. Phys. Chem. A 118, 8124.CrossRefGoogle Scholar
  52. 52.
    D. M. Black, S. B. H. Bach, and R. L. Whetten (2016). Anal. Chem. 88, 5631.CrossRefGoogle Scholar
  53. 53.
    S. Knoppe, J. Boudon, I. Dolamic, A. Dass, and T. Bürgi (2011). Anal. Chem. 83, 5056.CrossRefGoogle Scholar
  54. 54.
    X. Ren, J. Fu, X. Lin, X. Fu, J. Yan, R. Wu, C. Liu, and J. Huang (2018). Dalton Trans. 47, 7487.CrossRefGoogle Scholar
  55. 55.
    Y.-Z. Li, R. Ganguly, K. Y. Hong, Y. Li, M. E. Tessensohn, R. D. Webster and W. K. Leong. Chem. Sci. accepted.Google Scholar
  56. 56.
    Y. Shichibu, Y. Negishi, H. Tsunoyama, M. Kanehara, T. Teranishi, and T. Tsukuda (2007). Small 3, 835.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Chemistry & Biological ChemistryNanyang Technological UniversitySingaporeSingapore

Personalised recommendations