Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 123–129 | Cite as

The pH-Controlled Hydrothermal Synthesis and Crystal Structure of Two Novel Phosphomolybdate Derivatives

  • Feng-Xia MaEmail author
  • Ya-Guang Chen
  • Hong-Yan Yang
  • Xian-Wu Dong
  • Hui Jiang
  • Feng Wang
  • Jia-Hui Li
Original Paper
  • 30 Downloads

Abstract

Two novel phosphomolybdate derivatives, (H2en)(Hen)2(H2P2Mo5O23)·5H2O (1) and [Cu(phen)(en)][Cu(phen)(en)(H2O)]2[PMo 8 VI Mo 4 V O40{Cu(phen)}2]2·6H2O (2) (en = ethylenediamine, phen = 1,10′-phenanthroline), were synthesized under hydrothermal technique and characterized by crystal X-ray diffraction analysis, elemental analysis, IR and TGA. Compound 1 is constructed from a [H2P2Mo5O23]4− polyoxoanion and one (H2en)2+ cation and two (Hen)+ cations and is a typical Strandberg-type hepteropoly compound. The interaction force between the components are electrostatic force and hydrogen bonds which involve polyoxoanions, water molecules and ethylenediammonium cations. Compound 2 consists of one [Cu(phen)(en)]2+ and two [Cu(phen)(en)(H2O)]2+ cations and two [PMo 8 VI Mo 4 V O40{Cu(phen)}2]3− polyoxoanions. The reduced Keggin polyoxoanion [PMo 8 VI Mo 4 V O40]7− of 2 is capped by two divalent Cu atoms through four bridging oxo groups on two opposite {Mo4O4} faces. The results reveal that the pH plays a significant role in promoting the diversity of structural motifs. The effect of en is not only to ensure the required amounts of ligands for the reaction process, but also to control the pH. In the synthetic process, the control of the reaction conditions plays a crucial role in constructing different structures.

Keyword

Hydrothermal synthesis Phosphomolybdate Keggin anion Strandberg anion 

Notes

Funding

This study was supported by Jilin Agricultural Science and Technology University the Science Foundation (No. 2015246).

Supplementary material

10876_2018_1468_MOESM1_ESM.doc (6.1 mb)
Supplementary material 1 (DOC 6218 kb)

References

  1. 1.
    M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34.CrossRefGoogle Scholar
  2. 2.
    C. L. Hill (1998). Chem. Rev. 98, 1.CrossRefGoogle Scholar
  3. 3.
    P. J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. 38, 2638.CrossRefGoogle Scholar
  4. 4.
    H. Q. Tan, Y. G. Li, Z. M. Zhang, C. Qin, X. L. Wang, E. B. Wang, and Z. M. Su (2007). J. Am. Chem. Soc. 129, 10066.CrossRefGoogle Scholar
  5. 5.
    J. P. Wang, H. X. Ma, L. C. Zhang, W. S. You, and Z. M. Zhu (2014). Dalton Trans. 43, 17172–17176.CrossRefGoogle Scholar
  6. 6.
    Z. L. Li, Y. Wang, L. C. Zhang, J. P. Wang, W. S. You, and Z. M. Zhu (2014). Dalton Trans. 43, 5840–5846.CrossRefGoogle Scholar
  7. 7.
    H. X. Ma, J. Du, Z. M. Zhu, T. Lu, F. Su, and L. C. Zhang (2016). Dalton Trans. 45, 1631–1637.CrossRefGoogle Scholar
  8. 8.
    S. C. Sun, X. Liu, L. Yang, H. Tan, and E. B. Wang (2016). Eur. J. Inorg. Chem. 2016, 4179–4184.CrossRefGoogle Scholar
  9. 9.
    Y. Ammari, E. Dhahri, M. Rzaigui, E. K. Hlil, and S. Abid (2016). J. Clust. Sci. 27, 1213–1227.CrossRefGoogle Scholar
  10. 10.
    C. Dey, T. Kundu, and R. Banerjee (2012). Chem Commun. 4848, 266–268.CrossRefGoogle Scholar
  11. 11.
    I. Nagazi and A. Haddad (2013). J. Clust. Sci. 24, 145–155.CrossRefGoogle Scholar
  12. 12.
    L. Xu, H. Zhang, E. Wang, A. Wu, and Z. Li (2002). Mater. Lett. 54, 452–457.CrossRefGoogle Scholar
  13. 13.
    J. X. Meng, Y. G. Li, X. L. Wang, and E. B. Wang (2009). J. Coord. Chem. 62, 2283–2289.CrossRefGoogle Scholar
  14. 14.
    X. G. Cao, L. W. He, B. Z. Lin, and Z. J. Xiao (2010). J. Chem. Crystallogr. 40, 443–447.CrossRefGoogle Scholar
  15. 15.
    S. Upreti and A. Ramanan (2006). Crys. Growth Des. 6, 2066–2071.CrossRefGoogle Scholar
  16. 16.
    Y. Wang, L. C. Zhang, Z. M. Zhu, N. Li, A. F. Deng, and S. Y. Zheng (2011). Trans. Met. Chem. 36, 261–267.CrossRefGoogle Scholar
  17. 17.
    S. R. Jin, L. M. Zhang, S. Z. Liu, L. Bo, and X. G. Meng (2008). J. Wuhan Univ. Technol.-Mater. Sci. Ed. 23, 407–410.CrossRefGoogle Scholar
  18. 18.
    J. Lu, Y. Xu, N. K. Goh, and L. S. Chia (1998). Chem. Commun. 24, 2733–2734.CrossRefGoogle Scholar
  19. 19.
    E. Burkholder and J. Zubieta (2001). Chem. Commun. 20, 2056–2057.CrossRefGoogle Scholar
  20. 20.
    M. Bartholom, H. Chueng, S. Pellizzeri, K. Ellis-Guardiola, S. Jones, and J. Zubieta (2012). Inorg. Chim. Acta 389, 90–98.CrossRefGoogle Scholar
  21. 21.
    M. Carraro, A. Sartorel, G. Scorrano, C. Maccato, M. H. Dickman, U. Kortz, and M. Bonchio (2008). Angew. Chem. Int. Ed. 47, 7275–7279.CrossRefGoogle Scholar
  22. 22.
    M. P. Lowe, J. C. Lockhart, W. Clegg, and K. A. Fraser (1994). Angew. Chem. Int. Ed. 33, 451–454.CrossRefGoogle Scholar
  23. 23.
    J. Niu, J. Ma, J. Zhao, P. Ma, and J. Wang (2011). Inorg. Chem. Commun. 14, 474–477.CrossRefGoogle Scholar
  24. 24.
    K. Yu, B.-B. Zhou, Y. Yu, Z.-H. Su, H. Wang, C. Wang, and C. Wang (2012). Dalton Trans. 41, 10014–10020.CrossRefGoogle Scholar
  25. 25.
    Q. Chen and C. L. Hill (1996). Inorg. Chem. 35, 2403.CrossRefGoogle Scholar
  26. 26.
    F. Y. Li, L. Xu, Y. G. Wei, and E. B. Wang (2005). Inorg. Chem. Commun. 8, 263.CrossRefGoogle Scholar
  27. 27.
    Y. G. Li, E. B. Wang, and S. T. Wang (2002). J. Mol. Struct. 611, 185.CrossRefGoogle Scholar
  28. 28.
    J. X. Meng, Y. Lu, Y. G. Li, H. Fu, and E. B. Wang (2011). Cryst. Eng. Commun. 13, 2479–2486.CrossRefGoogle Scholar
  29. 29.
    A. Müller, C. Beugholt, P. Kögerler, H. Bögge, S. Bud’ko, and M. Luban (2000). Inorg. Chem. 39, 5176–5177.CrossRefGoogle Scholar
  30. 30.
    M. Yuan, Y. G. Li, E. B. Wang, C. G. Tian, N. H. Hu, and H. Q. Jia (2003). Inorg. Chem. 42, 3670–3676.CrossRefGoogle Scholar
  31. 31.
    Y. P. Bai, Y. G. Li, E. B. Wang, X. L. Wang, Y. Lu, and L. Xu (2005). J. Mol. Struct. 752, 54–59.CrossRefGoogle Scholar
  32. 32.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339–341.CrossRefGoogle Scholar
  33. 33.
    G. M. Sheldrick (2015). Acta. Cryst. A71, 3–8.Google Scholar
  34. 34.
    G. M. Sheldrick (2015). Acta. Cryst. C71, 3–8.Google Scholar
  35. 35.
    Z. Z. Lin, H. H. Zhang, C. C. Huang, and R. Q. Sun (2002). Chinese J. Struct. Chem. 21, 42–45.Google Scholar
  36. 36.
    J. W. Zhao, Y. Y. Li, Y. H. Wang, D. Y. Shi, J. Luo, and L. J. Chen (2013). Russ. J. Coord. Chem. 39, 519–523.CrossRefGoogle Scholar
  37. 37.
    R. Strandberg (1973). Acta. Chem. Scand. 27, 1004–1018.CrossRefGoogle Scholar
  38. 38.
    T. Akutagawa, D. Endo, H. Imai, S. Noro, L. Cronin, and T. Nakamura (2006). Inorg. Chem. 45, 8628–8637.CrossRefGoogle Scholar
  39. 39.
    F. Zocchi (2006). Chem. Phys. Let. 421, 277–280.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Feng-Xia Ma
    • 1
    Email author
  • Ya-Guang Chen
    • 2
  • Hong-Yan Yang
    • 1
  • Xian-Wu Dong
    • 1
  • Hui Jiang
    • 1
  • Feng Wang
    • 1
  • Jia-Hui Li
    • 1
  1. 1.Department of Arts and ScienceJilin Agricultural Science and Technology UniversityJilinPeople’s Republic of China
  2. 2.Key Laboratory of Polyoxometalates Science of Ministry of Education, College of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations