Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 105–113 | Cite as

Fabrication and Luminescence Properties of Flower-Like Cadmium Sulfide Using 1-Benzylidenethiourea as Sulfur Source and Capping Agent

  • S. SaeedniaEmail author
  • P. Iranmanesh
  • M. Hatefi Ardakani
  • T. Vafaei
Original Paper
  • 20 Downloads

Abstract

A thio Schiff base ligand, 1-benzylidenethiourea (L), was used as sulfur source and capping agent together for preparation of CdS nanostructures via solvothermal method in glycerol solvent. The Schiff base was characterized by elemental analysis as well as FT-IR and 1H, 13CNMR spectroscopies. Structure characterization of obtained CdS nanoparticles were studied by XRD, EDX, FT-IR and UV–Vis spectroscopies. SEM and TEM images were showed that the synthesized CdS have flower-like structures contain of several nanorods. The optical properties of the product was characterized by photoluminescence (PL) spectroscopy measurements. The PL spectrum of CdS nanoparticles shows a blue visible spectrum. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The effect of some parameter such as solvent type, temperature and duration of reaction on size and morphology of CdS nanostructure was investigated as well.

Keywords

Cadmium sulfide Nanostructure Solvothermal Photoluminescence 

Notes

Acknowledgements

Support for this investigation by Vali-e-Asr University of Rafsanjan is gratefully acknowledged. The authors also thank Dr. Mohammad Sabet from Vali-e-Asr University of Rafsanjan for his valuable helps.

References

  1. 1.
    X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg (2011). ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287.CrossRefGoogle Scholar
  2. 2.
    H. Cho, C. Yun, J.-W. Park, and S. Yoo (2009). Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Organ. Electron. 10, 1163–1169.CrossRefGoogle Scholar
  3. 3.
    X. Liu, X. Cai, J. Mao, and C. Jin (2001). ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application. Appl. Surf. Sci. 183, 103–110.CrossRefGoogle Scholar
  4. 4.
    M. Schlamp, X. Peng, and A. Alivisatos (1997). Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837–5842.CrossRefGoogle Scholar
  5. 5.
    Y.-J. Shen and Y.-L. Lee (2008). Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology 19, 045602.CrossRefGoogle Scholar
  6. 6.
    S. Biswas, M. Hossain, and T. Takahashi (2008). Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode. Thin Solid Films 517, 1284–1288.CrossRefGoogle Scholar
  7. 7.
    K. E. Sapsford, T. Pons, I. L. Medintz, and H. Mattoussi (2006). Biosensing with luminescent semiconductor quantum dots. Sensors 6, 925–953.CrossRefGoogle Scholar
  8. 8.
    G. Tai and W. Guo (2008). Sonochemistry-assisted microwave synthesis and optical study of single-crystalline CdS nanoflowers. Ultrason. Sonochem. 15, 350–356.CrossRefGoogle Scholar
  9. 9.
    A. V. Murugan, R. Sonawane, B. Kale, S. Apte, and A. V. Kulkarni (2001). Microwave–solvothermal synthesis of nanocrystalline cadmium sulfide. Mater. Chem. Phys. 71, 98–102.CrossRefGoogle Scholar
  10. 10.
    C. Li, X. Yang, B. Yang, Y. Yan, and Y. Qian (2006). Growth of microtubular complexes as precursors to synthesize nanocrystalline ZnS and CdS. J. Cryst. Growth 291, 45–51.CrossRefGoogle Scholar
  11. 11.
    T. Thongtem, A. Phuruangrat, and S. Thongtem (2007). Free surfactant synthesis of microcrystalline CdS by solvothermal reaction. Mater. Lett. 61, 3235–3238.CrossRefGoogle Scholar
  12. 12.
    J. Ma, G. Tai, and W. Guo (2010). Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles. Ultrason. Sonochem. 17, 534–540.CrossRefGoogle Scholar
  13. 13.
    G. Tai, J. Zhou, and W. Guo (2010). Inorganic salt-induced phase control and optical characterization of cadmium sulfide nanoparticles. Nanotechnology 21, 175601.CrossRefGoogle Scholar
  14. 14.
    R. Ma, X. Wei, L. Dai, H. Huo, and G. Qin (2007). Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18, 205605.CrossRefGoogle Scholar
  15. 15.
    F. Vaquero, R. Navarro, and J. Fierro (2016). Evolution of the nanostructure of CdS using solvothermal synthesis at different temperature and its influence on the photoactivity for hydrogen production. Int. J. Hydrog. Energy 41, 11558–11567.CrossRefGoogle Scholar
  16. 16.
    D. Chen, K. Tang, G. Shen, J. Sheng, Z. Fang, X. Liu, H. Zheng, and Y. Qian (2003). Microwave-assisted synthesis of metal sulfides in ethylene glycol. Mater. Chem. Phys. 82, 206–209.CrossRefGoogle Scholar
  17. 17.
    X.-H. Liao, J.-J. Zhu, and H.-Y. Chen (2001). Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Mater. Sci. Eng. B 85, 85–89.CrossRefGoogle Scholar
  18. 18.
    P. Iranmanesh, S. Saeednia, S. RashidiDafeh, and F. Yahyanasab (2015). Ultrasound Assisted Synthesis and Characterization of Mn Doped CdS Nanocrystalline Zinc-Blendes. J. Nanostruct. 5, 375–383.CrossRefGoogle Scholar
  19. 19.
    A. Phuruangrat, T. Thongtem, and S. Thongtem (2012). Characterization and photonic absorption of hierarchical tree-like CdS nanostructure synthesized by solvothermal method. Mater. Lett. 80, 114–116.CrossRefGoogle Scholar
  20. 20.
    S. H. Choi, K. An, E. G. Kim, J. H. Yu, J. H. Kim, and T. Hyeon (2009). Simple and generalized synthesis of semiconducting metal sulfide nanocrystals. Adv. Funct. Mater. 19, 1645–1649.CrossRefGoogle Scholar
  21. 21.
    Y. Ni, F. Wang, H. Liu, G. Yin, J. Hong, X. Ma, and Z. Xu (2004). A novel aqueous-phase route to prepare flower-shaped PbS micron crystals. J. Cryst. Growth 262, 399–402.CrossRefGoogle Scholar
  22. 22.
    P. Iranmanesh, S. Saeednia, and N. Khorasanipoor (2017). Tunable properties of cadmium substituted ZnS nanocrystals. Mater. Sci. Semicond. Process. 68, 193–198.CrossRefGoogle Scholar
  23. 23.
    S. Saeednia, P. Iranmanesh, M. Hatefi Ardakani, and M. Ahmadi (2018). Dinuclear cadmium (II) Schiff base complex: synthesis, crystal structure, spectroscopic characterization and application as a new precursor for preparation of nano-cadmium oxide. J. Iran. Chem. Soc. 15, 1163–1174.CrossRefGoogle Scholar
  24. 24.
    W. M. Haynes CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2014).Google Scholar
  25. 25.
    W. Qingqing, X. Gang, and H. Gaorong (2005). Solvothermal synthesis and characterization of uniform CdS nanowires in high yield. J. Solid State Chem. 178, 2680–2685.CrossRefGoogle Scholar
  26. 26.
    M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2009). Synthesis, thermal stability and photoluminescence of new cadmium sulfide/organic composite hollow sphere nanostructures. Inorg. Chim. Acta 362, 3677–3683.CrossRefGoogle Scholar
  27. 27.
    M. Shakouri-Arani and M. Salavati-Niasari (2014). Synthesis and characterization of cadmium sulfide nanocrystals in the presence of a new sulfur source via a simple solvothermal method. New J. Chem. 38, 1179–1185.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Saeednia
    • 1
    Email author
  • P. Iranmanesh
    • 2
  • M. Hatefi Ardakani
    • 1
  • T. Vafaei
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran
  2. 2.Department of Physics, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations