Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 151–159 | Cite as

Electronic and Work Function-Based Sensors for Acetylsalicylic Acid Based on the AlN and BN Nanoclusters: DFT Studies

  • Robabeh Moghadami
  • Esmail VessallyEmail author
  • Mirzaagha Babazadeh
  • Moosa Es’haghi
  • Ahmadreza Bekhradnia
Original Paper
  • 30 Downloads

Abstract

Using density functional theory calculations, we investigated the potential application of Al12N12 and B12N12 nanoclusters as an electronic or work function type sensor for acetylsalicylic acid (ASA) drug detection. The drug tends to be adsorbed on the surface of both AlN and BN clusters via its –COOH group with adsorption energies about − 62.8 and − 21.9 kcal/mol, respectively. The AlN nanocluster is neither electronic nor work function based sensor for ASA because of a low sensitivity, and a huge recovery time (~ 9.8 × 1038 s). But the response of BN nanocluster is completely different, and its electrical conductivity is largely increased in the presence of ASA drug due to the large stabilization of LUMO level. We concluded that the BN nanocluster may be a promising candidate to detect the ASA drug with a short recovery time about 109 s and a high electronic sensitivity. As the work function of the BN nanocluster is not affected by the ASA adsorption, it cannot be used as a work function type sensor.

Keywords

Sensor Boron nitride Aluminum nitride DFT 

References

  1. 1.
    B. J. Sanghavi and A. K. Srivastava (2010). Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta 55, 8638–8648.Google Scholar
  2. 2.
    V. Silvestre, V. M. Mboula, C. Jouitteau, S. Akoka, R. J. Robins, and G. S. Remaud (2009). Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol. J. Pharm. Biomed. Anal. 50, 336–341.Google Scholar
  3. 3.
    M. M. Sena, J. C. B. Fernandes, L. Rover Jr., R. J. Poppi, and L. T. Kubota (2000). Application of two-and three-way chemometric methods in the study of acetylsalicylic acid and ascorbic acid mixtures using ultraviolet spectrophotometry. Anal. Chim. Acta 409, 159–170.Google Scholar
  4. 4.
    M. Ito, T. Suzuki, S. Yada, H. Nakagami, H. Teramoto, E. Yonemochi, and K. Terada (2010). Development of a method for nondestructive NIR transmittance spectroscopic analysis of acetaminophen and caffeine anhydrate in intact bilayer tablets. J. Pharm. Biomed. Anal. 53, 396–402.Google Scholar
  5. 5.
    B. Pamukcu (2007). A review of aspirin resistance; definition, possible mechanisms, detection with platelet function tests, and its clinical outcomes. J. Thromb. Thromb. 23, 213–222.Google Scholar
  6. 6.
    M. M. Foroughi and M. Ranjbar (2017). Graphene oxide doped with PbO nanoparticles, synthesis by microwave assistant thermal decomposition and investigation of optical property. J. Clust. Sci. 28, 2847–2856.Google Scholar
  7. 7.
    H. Salimi, A. A. Peyghan, and M. Noei (2015). Adsorption of formic acid and formate anion on ZnO nanocage: a DFT study. J. Clust. Sci. 26, 609–621.Google Scholar
  8. 8.
    R. B. dos Santos, R. Rivelino, F. B. Mota, and G. K. Gueorguiev (2012). Exploring hydrogenation and fluorination in curved 2D carbon systems: a density functional theory study on corannulene. J. Phys. Chem. A 116, 9080–9087.Google Scholar
  9. 9.
    A. A. Peyghan, M. B. Tabar, and S. Yourdkhani (2013). A theoretical study of OH and OCH3 free radical adsorption on a nanosized tube of BC2N. J. Clust. Sci. 24, 1–10.Google Scholar
  10. 10.
    J. Beheshtian, M. T. Baei, Z. Bagheri, and A. A. Peyghan (2013). Carbon nitride nanotube as a sensor for alkali and alkaline earth cations. Appl. Surf. Sci. 264, 699–706.Google Scholar
  11. 11.
    R. Rivelino, R. B. dos Santos, F. de Brito Mota, and G. K. Gueorguiev (2010). Conformational effects on structure, electron states, and raman scattering properties of linear carbon chains terminated by graphene-like pieces. J. Phys. Chem. C 114, 16367–16372.Google Scholar
  12. 12.
    M. T. Baei, A. A. Peyghan, and Z. Bagheri (2013). Electronic, energetic, and geometric properties of methylene-functionalized C60. J. Clust. Sci. 24, 669–678.Google Scholar
  13. 13.
    A. A. Peyghan, M. T. Baei, S. Hashemian, and P. Torabi (2013). First principles calculations of electric field effect on the (6,0) zigzag single-walled silicon carbide nanotube for use in nano-electronic circuits. J. Clust. Sci. 24, 591–604.Google Scholar
  14. 14.
    C.-H. Jiang, Q. Chen, G.-X. Ge, Y.-B. Li, and J.-G. Wan (2016). Structure and spin-polarized transport of co atomic chains on graphene with topological line defects. J. Clust. Sci. 27, 875–882.Google Scholar
  15. 15.
    X.-D. Song, S. Wang, C. Hao, and J.-S. Qiu (2014). Investigation of SO2 gas adsorption in metal–organic frameworks by molecular simulation. Inorg. Chem. Commun. 46, 277–281.Google Scholar
  16. 16.
    Z. Dong, X. Kong, Y. Wu, J. Zhang, and Y. Chen (2017). High-sensitive room-temperature NO2 sensor based on a soluble n-type phthalocyanine semiconductor. Inorg. Chem. Commun. 77, 18–22.Google Scholar
  17. 17.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Chem. Mon. 143, 1623–1626.Google Scholar
  18. 18.
    J.-Y. Zhang, L.-J. Su, Q.-J. Guo, and J. Tao (2017). Semiconducting spin-crossover cobalt(II) compound with non-integer charge distribution among TCNQ radicals. Inorg. Chem. Commun. 82, 39–43.Google Scholar
  19. 19.
    N. L. Hadipour, A. Ahmadi Peyghan, and H. Soleymanabadi (2015). Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C 119, 6398–6404.Google Scholar
  20. 20.
    L. Zhang, W. Yang, X.-Y. Wu, M. Huo, C.-Z. Lu, and W.-Z. Chen (2016). A polyhedron-based cobalt-organic framework for gas adsorption and separation. Inorg. Chem. Commun. 67, 10–13.Google Scholar
  21. 21.
    K. Wakamatsu, K. Nishimoto, and T. Shibahara (2000). TDDFT study of electronic spectra of photochromic dinuclear molybdenum complex. Inorg. Chem. Commun. 3, 677–679.Google Scholar
  22. 22.
    A. A. Peyghan and H. Soleymanabadi (2015). Computational study on ammonia adsorption on the X12Y12 nanoclusters (X = B, Al and Y = N, P). Curr. Sci. 108, 00113891.Google Scholar
  23. 23.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2013). Functionalization of BN nanosheet with N2H4 may be feasible in the presence of Stone–Wales defect. Struct. Chem. 24, 1565–1570.Google Scholar
  24. 24.
    M. Samadizadeh, S. F. Rastegar, and A. A. Peyghan (2015). F, Cl, Li+ and Na+ adsorption on AlN nanotube surface: a DFT study. Phys. E 69, 75–80.Google Scholar
  25. 25.
    C. Wang, X. Luo, S. Zhang, Q. Shen, and L. Zhang (2014). Effects of nitrogen gas ratio on magnetron sputtering deposited boron nitride films. Vacuum 103, 68–71.Google Scholar
  26. 26.
    J. Beheshtian, A. A. Peyghan, Z. Bagheri, and M. Kamfiroozi (2012). Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct. Chem. 23, 1567–1572.Google Scholar
  27. 27.
    Z. Bagheri and A. A. Peyghan (2013). DFT study of NO2 adsorption on the AlN nanocones. Comput. Theor. Chem. 1008, 20–26.Google Scholar
  28. 28.
    A. V. Moradi, A. A. Peyghan, S. Hashemian, and M. T. Baei (2012). Theoretical study of thiazole adsorption on the (6, 0) zigzag single-walled boron nitride nanotube. Bull. Korean Chem. Soc. 33, 3285–3292.Google Scholar
  29. 29.
    J. Beheshtian, H. Soleymanabadi, A. A. Peyghan, and Z. Bagheri (2012). A DFT study on the functionalization of a BN nanosheet with PC-X,(PC = phenyl carbamate, X = OCH3, CH3, NH2, NO2 and CN). Appl. Surf. Sci. 268, 436–441.Google Scholar
  30. 30.
    M. Tosa and K. Yoshihara (1990). Surface precipitation of boron nitride on the surface of stainless steel/boron nitride film. Vacuum 41, 1873–1875.Google Scholar
  31. 31.
    J. Beheshtian, A. A. Peyghan, M. B. Tabar, and Z. Bagheri (2013). DFT study on the functionalization of a BN nanotube with sulfamide. Appl. Surf. Sci. 266, 182–187.Google Scholar
  32. 32.
    N. Kostoglou, K. Polychronopoulou, and C. Rebholz (2015). Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 112, 42–45.Google Scholar
  33. 33.
    M. Rezaei-Sameti and E. Samadi Jamil (2016). The adsorption of CO molecule on pristine, As, B, BAs doped (4, 4) armchair AlNNTs: a computational study. J. Nanostruct. Chem. 6, 197–205.Google Scholar
  34. 34.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2013). Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J. Mol. Model. 19, 2197–2203.Google Scholar
  35. 35.
    Z. Goodarzi, M. Maghrebi, A. F. Zavareh, Z.-B. Mokhtari-Hosseini, B. Ebrahimi-hoseinzadeh, A. H. Zarmi, and M. Barshan-tashnizi (2015). Evaluation of nicotine sensor based on copper nanoparticles and carbon nanotubes. J. Nanostruct. Chem. 5, 237–242.Google Scholar
  36. 36.
    K. Yum and M.-F. Yu (2006). Measurement of wetting properties of individual boron nitride nanotubes with the Wilhelmy method using a nanotube-based force sensor. Nano Lett. 6, 329–333.Google Scholar
  37. 37.
    E. Salih, M. Mekawy, R. Y. A. Hassan, and I. M. El-Sherbiny (2016). Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. J. Nanostruct. Chem. 6, 137–144.Google Scholar
  38. 38.
    A. Soltani, A. Ahmadi Peyghan, and Z. Bagheri (2013). H2O2 adsorption on the BN and SiC nanotubes: a DFT study. Phys. E 48, 176–180.Google Scholar
  39. 39.
    C. Zhi, Y. Bando, C. Tang, and D. Golberg (2010). Boron nitride nanotubes. Mater. Sci. Eng. R Rep. 70, 92–111.Google Scholar
  40. 40.
    D. L. Strout (2000). Structure and stability of boron nitrides: isomers of B12N12. J. Phys. Chem. A 104, 3364–3366.Google Scholar
  41. 41.
    R. Wang, D. Zhang, and C. Liu (2005). Theoretical prediction of a novel inorganic fullerene-like family of silicon–carbon materials. Chem. Phys. Lett. 411, 333–338.Google Scholar
  42. 42.
    H.-S. Wu, F.-Q. Zhang, X.-H. Xu, C.-J. Zhang, and H. Jiao (2003). Geometric and energetic aspects of aluminum nitride cages. J. Phys. Chem. A 107, 204–209.Google Scholar
  43. 43.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Selective function of Al12N12 nano-cage towards NO and CO molecules. Comput. Mater. Sci. 62, 71–74.Google Scholar
  44. 44.
    Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe (2009). Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3, 621–626.Google Scholar
  45. 45.
    F. Jensen and H. Toftlund (1993). Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett. 201, 89–96.Google Scholar
  46. 46.
    H.-S. Wu, X.-Y. Cui, X.-F. Qin, D. L. Strout, and H. Jiao (2006). Boron nitride cages from B12N12 to B36N36: square–hexagon alternants vs boron nitride tubes. J. Mol. Model. 12, 537–542.Google Scholar
  47. 47.
    L. Mahdavian (2016). Using of B12N12 nano-cage for detection and reduction of 2,3,7,8-tetrachlorodibenzodioxine (TCDD). Sens. Lett. 14, 280–284.Google Scholar
  48. 48.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comp. Chem. 14, 1347–1363.Google Scholar
  49. 49.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens. Actuators B Chem. 171, 846–852.Google Scholar
  50. 50.
    M. A. Abdulsattar (2011). SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: density functional theory study. Superlattices Microstruct. 50, 377–385.Google Scholar
  51. 51.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Detection of phosgene by Sc-doped BN nanotubes: A DFT study. Sens. Actuators B: Chem. 171, 846–852.Google Scholar
  52. 52.
    S. Tomic, B. Montanari, and N. M. Harrison (2008). The group III–V’s semiconductor energy gaps predicted using the B3LYP hybrid functional. Phys. E 40, 2125–2127.Google Scholar
  53. 53.
    N. O’Boyle, A. Tenderholt, and K. Langner (2008). CCLIB: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845.Google Scholar
  54. 54.
    T. Shimanouchi (1977). Tables of molecular vibrational frequencies, Consolidated volume II. J. Phys. Chem. Ref. Data 6, 993–1102.Google Scholar
  55. 55.
    D. Coker, J. Reimers, and R. Watts (1982). The infrared absorption spectrum of water. Aust. J. Phys. 35, 623–638.Google Scholar
  56. 56.
    I. Baikie, S. Mackenzie, P. Estrup, and J. Meyer (1991). Noise and the Kelvin method. Rev. Sci. Instrum. 62, 1326–1332.Google Scholar
  57. 57.
    G. Korotcenkov, Sensing layers in work-function-type gas sensors, in: Handbook of Gas Sensor Materials (Springer, Berlin 2013), pp. 377–388.Google Scholar
  58. 58.
    O. Richardson (1924). Electron emission from metals as a function of temperature. Phys. Rev. 23, 153–157.Google Scholar
  59. 59.
    S. Dushman (1930). Thermionic emission. Rev. Mod. Phys. 2, 381–385.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Robabeh Moghadami
    • 1
  • Esmail Vessally
    • 2
    Email author
  • Mirzaagha Babazadeh
    • 1
  • Moosa Es’haghi
    • 1
  • Ahmadreza Bekhradnia
    • 3
  1. 1.Department of Chemistry, Tabriz BranchIslamic Azad UniversityTabrizIran
  2. 2.Department of ChemistryPayame Noor UniversityTehranIran
  3. 3.Department of Medicinal Chemistry, Pharmaceutical Sciences Research CenterMazandaran University of Medical SciencesSariIran

Personalised recommendations