Journal of Cluster Science

, Volume 30, Issue 1, pp 69–76 | Cite as

Li-Decorated Fullerenes: A DFT Study

  • Maryam AnafchehEmail author
Original Paper


Density functional calculations have been applied to study the structure, stability and aromaticity of Li-decorated non-IPR fullerene cages, Cn with n = 44, 46, 48, and 50, and IPR fullerene cages, Cn with n = 60, 70, 76, and 84. Based on our results, the binding energies per Li atom for Li12Cn clusters depend on the type and size of the cages. As of Li-decorated IPR fullerenes, where pentagons are isolated, there is virtually no interaction between the Li atoms, so that the binding energies for the Li-decorated IPR Cn fullerenes are obtained to be larger than those for the Li-decorated non-IPR ones. The C–C bond lengths in the pentagons of Li12Cn clusters are enlarged relative to those of pristine Cn clusters. Based on NBO analysis, charge transfer (~ 0.5e) from Li to the fullerene cage makes the Li atoms positively charged. NICS data suggest that the degree of aromaticity in C60, C76, and C84 cages increases upon formation of the Li-decorated Cn clusters while more positive NICS values are obtained for C70 and the smaller fullerenes with Li decoration of the cages.


Fullerene Hydrogen storage Li decoration NBO NICS 



We gratefully acknowledge for the financial support from the Research Council of Alzahra University.


  1. 1.
    P. Jena (2011). J. Phys. Chem. Lett. 2, 206.CrossRefGoogle Scholar
  2. 2.
    L. Schlapbach and A. Züttel (2001). Nature 414, 353.CrossRefGoogle Scholar
  3. 3.
    B. C. H. Steele and A. Heinzel (2001). Nature (London) 414, 345.CrossRefGoogle Scholar
  4. 4.
    R. D. Cortright, R. R. Davada, and J. A. Dumesic (2002). Nature (London) 418, 964.CrossRefGoogle Scholar
  5. 5.
    J. Alper (2003). Science 299, 1686.CrossRefGoogle Scholar
  6. 6.
    U.S. DOE; USCAR; Shell; BP; Conoco Phillips; Chevron; Exxon Mobil; The FreedomCAR and Fuel Partnership Multi-Year Research, Development and Demonstration Plan. (2009).
  7. 7.
    H. Kawano, A. Tanaka, S. Sugimoto, T. Iseki, Y. Zhu, M. Wada, and M. Sasao (2000). Rev. Sci. Instrum. 71, 853.CrossRefGoogle Scholar
  8. 8.
    A. V. Talyzin, Y. M. Shulga, and A. Jacob (2004). Appl. Phys. A: Mater. Sci. Process. 78, 1005.CrossRefGoogle Scholar
  9. 9.
    A. V. Talyzin, Y. O. Tsybin, T. M. Schaub, P. Mauron, Y. M. Shulga, A. Zuttel, B. Sundqvist, and A. G. Marshall (2005). J. Phys. Chem. B 109, 12742.CrossRefGoogle Scholar
  10. 10.
    E. L. Brosha, J. Davey, F. H. Garzon, Gottesfeld, and S. Irreversible (1999). J. Mater. Res. 14, 2138.CrossRefGoogle Scholar
  11. 11.
    S. M. Luzan, Y. O. Tsybin, and A. V. Talyzin (2011). J. Phys. Chem. C 115, 11484.CrossRefGoogle Scholar
  12. 12.
    A. V. Talyzin, B. Sundqvist, Y. M. Shulga, A. A. Peera, P. Imus, and W. E. Billupsn (2004). Chem. Phys. Lett. 400, 112.CrossRefGoogle Scholar
  13. 13.
    N. Wang and J. Zhang (2006). J. Phys. Chem. A 110, 6276.CrossRefGoogle Scholar
  14. 14.
    Q. Sun, P. Jena, Q. Wang, and M. Marquez (2006). J. Am. Chem. Soc. 128, 9741.CrossRefGoogle Scholar
  15. 15.
    G. Kubas (2001). J. Organomet. Chem. 635, 37.CrossRefGoogle Scholar
  16. 16.
    J. Niu, B. K. Rao, and P. Jena (1992). Phys. Rev. Lett. 68, 2277.CrossRefGoogle Scholar
  17. 17.
    J. A. Teprovich Jr., M. S. Wellons, R. Lascola, S.-J. Hwang, P. A. Ward, R. N. Compton, and R. Zidan (2012). Nano Lett. 12, 582.CrossRefGoogle Scholar
  18. 18.
    Q. Wang and P. Jena (2012). J. Phys. Chem. Lett. 3, 1084.CrossRefGoogle Scholar
  19. 19.
    M. Anafcheh and F. Naderi (2018). Int. J. Hydrogen Energy 43, 12271–12277.CrossRefGoogle Scholar
  20. 20.
    Y.-Z. Tan, S.-Y. Xie, R.-B. Huang, and L.-S. Zheng (2009). Nature Chemistry 1, 450.CrossRefGoogle Scholar
  21. 21.
    H. W. Kroto (1987). Nature 329, 529.CrossRefGoogle Scholar
  22. 22.
    P. W. Fowler and D. E. Manolopoulos An Atlas of Fullerenes (Clarendon Press, Oxford, 1995).Google Scholar
  23. 23.
    T. G. Schmalz, W. A. Seitz, D. J. Klein, and G. E. Hite (1988). J. Am. Chem. Soc. 110, 1113.CrossRefGoogle Scholar
  24. 24.
    E. Albertazzi, A. C. Domene, B. P. W. Fowler, B. T. Heine, B. G. Seifert, C. C. Van Alsenoyd, and F. Zerbettoe (1999). Phys. Chem. Chem. Phys. 1, 2913.CrossRefGoogle Scholar
  25. 25.
    D. Moran, F. Stahl, E. D. Jemmis, H. F. Schaefer, and Pv R Schleyer (2002). J. Phys. Chem. A 106, 5144.CrossRefGoogle Scholar
  26. 26.
    Z. F. Chen, H. J. Jiao, D. Moran, A. Hirsch, W. Thiel, and Pv R Schleyer (2003). J. Phys. Chem. A 107, 2075.CrossRefGoogle Scholar
  27. 27.
    Y.-P. An, C.-L. Yang, M.-S. Wang, X.-G. Ma, and D.-H. Wang (2010). Current Applied Physics 10, 260.CrossRefGoogle Scholar
  28. 28.
    M. Buhl and A. Hirsch (2001). Chem. Rev. 101, 1153.CrossRefGoogle Scholar
  29. 29.
    K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, H. Shiromaru, Y. Miyake, K. Saito, I. Ikemoto, M. Kainosho, and Y. Achiba (1992). Nature 357, 142.CrossRefGoogle Scholar
  30. 30.
    C. Piskoti, J. Yarger, and A. Zettl (1998). Nature 393, 771.CrossRefGoogle Scholar
  31. 31.
    B. Hong (2006). J. Chem. Phys. 124, 144108.CrossRefGoogle Scholar
  32. 32.
    Pv R Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. V. E. Hommes (1996). J. Am. Chem. Soc. 118, 6317.CrossRefGoogle Scholar
  33. 33.
    Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Account. 120, 215.CrossRefGoogle Scholar
  34. 34.
    P. C. Hariharan and J. A. Pople (1974). Mol. Phys. 27, 209.CrossRefGoogle Scholar
  35. 35.
    S. Osuna and K. N. Houk (2009). Chem. Eur. J. 15, 13219.CrossRefGoogle Scholar
  36. 36.
    R. Ghafouri and F. Ektefa (2015). Struct. Chem. 26, 507.CrossRefGoogle Scholar
  37. 37.
    M. Anafcheh and R. Ghafouri (2014). Physica E 56, 351.CrossRefGoogle Scholar
  38. 38.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comput. Chem. 14, 1347.CrossRefGoogle Scholar
  39. 39.
    M. S. Gordon and M. W. Schmidt Advances in electronic structure theory: GAMESS a decade later. in C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (eds.), Theory and Applications of Computational Chemistry: The First Forty Years (Elsevier, Amsterdam, 2005).Google Scholar
  40. 40.
    Y. F. Chang, J. P. Zhang, H. Sun, B. Hong, Z. An, and R. S. Wang (2005). Int. J. Quantum Chem. 105, 142.CrossRefGoogle Scholar
  41. 41.
    H. Zettergren, M. Alcamí, and F. Martin (2008). Chem. Phys. Chem. 9, 861.CrossRefGoogle Scholar
  42. 42.
    G. E. Scuseria (1991). Chem. Phys. Lett. 180, 451.CrossRefGoogle Scholar
  43. 43.
    D. R. McKenzie, C. A. Davis, D. J. H. Cockayne, D. A. Muller, and A. M. Vassallo (1992). Nature 355, 622.CrossRefGoogle Scholar
  44. 44.
    K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and M. Vries (1991). Science 254, 410.CrossRefGoogle Scholar
  45. 45.
    D.-L. Wang, H.-L. Xu, Z.-M. Su, and D.-Y.n Hou (2011). Comput. Theor. Chem. 978, 166.CrossRefGoogle Scholar
  46. 46.
    H.-S. Wu, X.-H. Xu, and H. Jiao (2004). J. Phys. Chem. A 108, 3813.CrossRefGoogle Scholar
  47. 47.
    A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.CrossRefGoogle Scholar
  48. 48.
    A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys. 83, 735.CrossRefGoogle Scholar
  49. 49.
    S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.CrossRefGoogle Scholar
  50. 50.
    Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and Pv R Schleyer (2005). Chem. Rev. 105, 3842.CrossRefGoogle Scholar
  51. 51.
    G. Sun, M. C. Nicklaus, and R.-H. Xie (2005). J. Phys. Chem. A 109, 4617.CrossRefGoogle Scholar
  52. 52.
    H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler (1998). Phys. Rev. Lett. 81, 5378.CrossRefGoogle Scholar
  53. 53.
    X. Lu and Z. Chen (2005). Chem. Rev. 105, 3643.CrossRefGoogle Scholar
  54. 54.
    X. Lu, Z. Chen, W. Thiel, Pv R Schleyer, R. Huang, and L. Zheng (2004). J. Am. Chem. Soc. 126, 14871.CrossRefGoogle Scholar
  55. 55.
    M. Bühl (1998). Chem. Eur. J. 4, 734.CrossRefGoogle Scholar
  56. 56.
    T. Sternfeld, C. Thilgen, R. E. Hoffman, M. R. C. Heras, F. Diederich, F. Wudl, L. T. Scott, J. Mack, and M. Rabinovitz (2002). J. Am. Chem. Soc. 124, 5734.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryAlzahra UniversityTehranIran

Personalised recommendations