Potential of Doped Nanocones as Catalysts for N2O + CO Reaction: Theoretical Investigation
- 53 Downloads
Abstract
The reduction mechanisms of N2O on surfaces of P-doped carbon nanocone (CNC) and Si-doped boron nitride nanocone (BNNC) were investigated by using of density functional theory. The adsorption energies of P and Si on surfaces of CNC and BNNC were − 293.1 and − 325.7 kcal/mol, respectively. The decomposition of CNC-P–N2O and BNNC-Si–N2O and reduction of CNC-P–O* and BNNC-Si–O* by using of the CO molecule were investigated. Results show that BNNC-Si–O* has lower activation energy and higher ∆Gad than CNC-P–O*. Results show that activation energy for BNNC-Si–O* + N2O → BNNC-Si–O2 + N2 and CNC-P–O* + N2O → CNC-P–O2 + N2 reactions were 32.56 and 36.78 kcal/mol, respectively. The results show that P-doped CNC and Si-doped BNNC can be potential catalysts to reduction of N2O.
Keywords
Atom doping Catalyst Nanocone Adsorption N2O reductionReferences
- 1.Z. Shao, P. Wu, Y. Gao, I. Gutman, and X. Zhang (2017). Appl. Math. Comput. 315, 298–312.Google Scholar
- 2.Z. Shao, P. Wu, X. Zhang, D. Dimitrov, and J. Liu (2018). IEEE Access 6, 27604–27616.CrossRefGoogle Scholar
- 3.S. Sharifian, M. Harasek, and B. Haddadi (2016). Chem. Prod. Process Model. 11, 67–72.Google Scholar
- 4.S. Sharifian, M. Miltner, and M. Harasek (2016). Chem. Eng. Trans. 52, 565–570.Google Scholar
- 5.S. Sharifian and M. Harasek (2015). Chem. Eng. Trans. 45, 409–414.Google Scholar
- 6.S. Sharifian and M. Harasek (2015). Chem. Eng. Trans. 45, 1003–1008.Google Scholar
- 7.M. Amin, F. Zarandi Krishna, and M. Pillai (2018). AIChE J. 634, 306–315.Google Scholar
- 8.M. Amin, F. Zarandi Krishna, M. Pillai Adam, and S. Kimmel (2018). AIChE J. 64, 294–305.CrossRefGoogle Scholar
- 9.H. Rafatijo and D. L. Thompson (2017). J. Chem. Phys. 147, 224111.CrossRefGoogle Scholar
- 10.C. K. Siu, S. Reitmeier, and I. Balteanu (2007). Eur. Phys. J. D 43, 189–192.CrossRefGoogle Scholar
- 11.B. Z. Sun, W.-K. Chen, and X. Wang (2007). Appl. Surf. Sci. 253, 7501–7505.CrossRefGoogle Scholar
- 12.M. M. Kappes and R. H. Staley (1981). J. Am. Chem. Soc. 103, 1286–1287.CrossRefGoogle Scholar
- 13.X. L. Xu, E. Yang, and J. Q. Li (2009). Chem. Cat. Chem 1, 384–392.Google Scholar
- 14.K. Kartha and M. Pai (2011). J. Mol. Catal. A Chem. 335, 158–168.CrossRefGoogle Scholar
- 15.N. Injan and J. Sirijaraensre (2014). Phys. Chem. Chem. Phys. 16, 23182–23187.CrossRefGoogle Scholar
- 16.P. Granger and P. Malfoy (1999). J. Catal. 187, 321–331.CrossRefGoogle Scholar
- 17.J. Arenas-Alatorre (2005). J. Phys. Chem. B 109, 2371–2376.CrossRefGoogle Scholar
- 18.P. Giese, H. Kirsch, and M. Wolf (2011). J. Phys. Chem. C 115, 10012–10018.CrossRefGoogle Scholar
- 19.X. Wei and X. F. Yang (2012). J. Phys. Chem. C 116, 6222–6232.CrossRefGoogle Scholar
- 20.Y. Chen and B. Gao (2012). J. Mol. Model. 18, 2043–2054.CrossRefGoogle Scholar
- 21.P. Nematollahi and M. D. Esrafili (2016). RSC Adv. 6, 59091–59099.CrossRefGoogle Scholar
- 22.S.-Y. Xie, W. Wang, and K. S. Fernando (2005). Chem. Commun. 29, 3670–3672.CrossRefGoogle Scholar
- 23.S. Saha and T. C. Dinadayalane (2013). Chem. Phys. Lett. 565, 69–73.CrossRefGoogle Scholar
- 24.P. Singla, S. Singhal, and N. Goel (2013). Appl. Surf. Sci. 283, 881–887.CrossRefGoogle Scholar
- 25.M. D. Esrafili and R. Nurazar (2014). Appl. Surf. Sci. 314, 90–96.CrossRefGoogle Scholar
- 26.Z. Wang, H. He, W. Slough, and R. Pandey (2015). J. Phys. Chem. C 119, 25965–25973.CrossRefGoogle Scholar
- 27.A. Rubio, J. L. Corkill, and M. L. Cohen (1994). Phys. Rev. B 49, 5081.CrossRefGoogle Scholar
- 28.J. Andzelm and C. Kolmel (1995). J. Chem. Phys. 103, 9312–9320.CrossRefGoogle Scholar
- 29.L. H. Gan and J. Q. Zhao (2009). Physica E 41, 1249–1252.CrossRefGoogle Scholar
- 30.S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553–566.CrossRefGoogle Scholar
- 31.M. D. Esrafili and N. Saeidi (2017). Appl. Sci. Res. 403, 43–50.Google Scholar
- 32.B. Kaewruksa, R. Wanbayor, and V. Ruangpornvisuti (2012). J. Mol. Struct. 1012, 50–55.CrossRefGoogle Scholar
- 33.M. D. Esrafili and N. Saeidi (2015). Physica E 74, 382–387.CrossRefGoogle Scholar
- 34.M. D. Esrafili, P. Nematollahi, and H. Abdollahpour (2016). Appl. Surf. Sci. 378, 418–425.CrossRefGoogle Scholar
- 35.M. D. Esrafili, P. Nematollahi, and R. Nurazar (2016). Superlattices Microstruct. 92, 60–67.CrossRefGoogle Scholar
- 36.M. D. Esrafili and N. Saeidi (2017). Chem. Phys. Lett. 671, 49–55.CrossRefGoogle Scholar
- 37.A. S. Shalabi, H. O. Taha, K. A. Soliman, and S. Abeld Aal (2014). J. Power Sources 271, 32–41.CrossRefGoogle Scholar
- 38.J. Shen, M. Wang, L. Zhao, P. Zhang, J. Jiang, and J. Liu (2018). J. Power Sources 389, 160–168.CrossRefGoogle Scholar
- 39.A. Hosseinian, P. Delir Kheirollahi-Nezhad, and S. Ahmadi (2018). Physica E 100, 63–68.CrossRefGoogle Scholar
- 40.Gh Barati Darband and M. Aliofkhazraei (2018). Int. J. Hydrog. Energy 24, 1–7.Google Scholar
- 41.D. Zhong, B. Cai, X. Wang, Z. Yang, W. Zhanga, and C. Li (2015). Nano Energy 11, 409–418.CrossRefGoogle Scholar
- 42.S. Yoon, J. Y. Yun, J. H. Lim, and B. Yoo (2017). J. Alloys Compd. 693, 964–969.CrossRefGoogle Scholar
- 43.Gh Barati Darband and A. Sabour Rouhaghdam (2017). Int. J. Hydrog. Energy 23, 1–6.Google Scholar
- 44.N. Jitendra, A. Tiwari, C. Tin, P. Fu, and L. Kin (2008). J. Power Sources 182, 510–514.CrossRefGoogle Scholar
- 45.J. Bae, N. Kulkarni, J. Zhou, J. G. Ekerdt, and C. Shih (2008). J. Cryst. Growth 310, (4), 407–4411.Google Scholar
- 46.B. Rajesh, K. R. Thampi, A. J. McEvoy, and H. J. Mathieu (2004). J. Power Sources 133, 155–161.CrossRefGoogle Scholar
- 47.H. Randall, R. Doepper, and A. Renken (1998). Appl. Catal. B Environ. 17, 357–369.CrossRefGoogle Scholar
- 48.V. Blagojevic and D. K. Bohme (2006). Int. J. Mass Spectrom. 254, 152–154.CrossRefGoogle Scholar
- 49.R. Gholizadeh and Y. Yu (2015). Appl. Surf. Sci. 357, 1187–1195.CrossRefGoogle Scholar
- 50.J. M. A. Harmsen, J. H. B. J. Hoebink, and J. C. Schouten (2001). Catal. Lett. 71, 1–2.CrossRefGoogle Scholar
- 51.S. Wannakao, T. Nongnual, and T. Maihom (2012). J. Phys. Chem. C 116, 16992–16998.CrossRefGoogle Scholar
- 52.X. Xu, E. Yang, J. Li, Y. Li, and W. Chen (2009). Chem. Cat. Chem. 1, 384–392.Google Scholar
- 53.V. P. Zhdanov, Y. Ma, and T. Matsushima (2005). Surf. Sci. 583, 36–45.CrossRefGoogle Scholar
- 54.M. D. Esrafili and E. Vessally (2018). Surf. Sci. 667, 105–111.CrossRefGoogle Scholar
- 55.P. Maitarad, S. Namuangruk, D. Zhang, L. Shi, H. Li, L. Huang, B. Boekfa, and M. Ehara (2014). Environ. Sci. Technol. 48, 7101–7110.CrossRefGoogle Scholar
- 56.P. Maitarad, J. Meeprasert, L. Shi, J. Limtrakul, D. Zhang, and S. Namuangruk (2016). Catal. Sci. Technol. 6, 3878–3885.CrossRefGoogle Scholar
- 57.L. Yan, Y. Liu, K. Zha, H. Li, L. Shi, D. Zhang, and A. C. S. Appl (2017). Mater. Interfaces 9, 2581–2593.CrossRefGoogle Scholar