Advertisement

Potential of Doped Nanocones as Catalysts for N2O + CO Reaction: Theoretical Investigation

  • Xiaolong Shi
  • Mohsen Sarafbidabad
  • Aygul Z. Ibatova
  • Razieh Razavi
  • Meysam Najafi
Original Paper
  • 28 Downloads

Abstract

The reduction mechanisms of N2O on surfaces of P-doped carbon nanocone (CNC) and Si-doped boron nitride nanocone (BNNC) were investigated by using of density functional theory. The adsorption energies of P and Si on surfaces of CNC and BNNC were − 293.1 and − 325.7 kcal/mol, respectively. The decomposition of CNC-P–N2O and BNNC-Si–N2O and reduction of CNC-P–O* and BNNC-Si–O* by using of the CO molecule were investigated. Results show that BNNC-Si–O* has lower activation energy and higher ∆Gad than CNC-P–O*. Results show that activation energy for BNNC-Si–O* + N2O → BNNC-Si–O2 + N2 and CNC-P–O* + N2O → CNC-P–O2 + N2 reactions were 32.56 and 36.78 kcal/mol, respectively. The results show that P-doped CNC and Si-doped BNNC can be potential catalysts to reduction of N2O.

Keywords

Atom doping Catalyst Nanocone Adsorption N2O reduction 

References

  1. 1.
    Z. Shao, P. Wu, Y. Gao, I. Gutman, and X. Zhang (2017). Appl. Math. Comput. 315, 298–312.Google Scholar
  2. 2.
    Z. Shao, P. Wu, X. Zhang, D. Dimitrov, and J. Liu (2018). IEEE Access 6, 27604–27616.CrossRefGoogle Scholar
  3. 3.
    S. Sharifian, M. Harasek, and B. Haddadi (2016). Chem. Prod. Process Model. 11, 67–72.Google Scholar
  4. 4.
    S. Sharifian, M. Miltner, and M. Harasek (2016). Chem. Eng. Trans. 52, 565–570.Google Scholar
  5. 5.
    S. Sharifian and M. Harasek (2015). Chem. Eng. Trans. 45, 409–414.Google Scholar
  6. 6.
    S. Sharifian and M. Harasek (2015). Chem. Eng. Trans. 45, 1003–1008.Google Scholar
  7. 7.
    M. Amin, F. Zarandi Krishna, and M. Pillai (2018). AIChE J. 634, 306–315.Google Scholar
  8. 8.
    M. Amin, F. Zarandi Krishna, M. Pillai Adam, and S. Kimmel (2018). AIChE J. 64, 294–305.CrossRefGoogle Scholar
  9. 9.
    H. Rafatijo and D. L. Thompson (2017). J. Chem. Phys. 147, 224111.CrossRefGoogle Scholar
  10. 10.
    C. K. Siu, S. Reitmeier, and I. Balteanu (2007). Eur. Phys. J. D 43, 189–192.CrossRefGoogle Scholar
  11. 11.
    B. Z. Sun, W.-K. Chen, and X. Wang (2007). Appl. Surf. Sci. 253, 7501–7505.CrossRefGoogle Scholar
  12. 12.
    M. M. Kappes and R. H. Staley (1981). J. Am. Chem. Soc. 103, 1286–1287.CrossRefGoogle Scholar
  13. 13.
    X. L. Xu, E. Yang, and J. Q. Li (2009). Chem. Cat. Chem 1, 384–392.Google Scholar
  14. 14.
    K. Kartha and M. Pai (2011). J. Mol. Catal. A Chem. 335, 158–168.CrossRefGoogle Scholar
  15. 15.
    N. Injan and J. Sirijaraensre (2014). Phys. Chem. Chem. Phys. 16, 23182–23187.CrossRefGoogle Scholar
  16. 16.
    P. Granger and P. Malfoy (1999). J. Catal. 187, 321–331.CrossRefGoogle Scholar
  17. 17.
    J. Arenas-Alatorre (2005). J. Phys. Chem. B 109, 2371–2376.CrossRefGoogle Scholar
  18. 18.
    P. Giese, H. Kirsch, and M. Wolf (2011). J. Phys. Chem. C 115, 10012–10018.CrossRefGoogle Scholar
  19. 19.
    X. Wei and X. F. Yang (2012). J. Phys. Chem. C 116, 6222–6232.CrossRefGoogle Scholar
  20. 20.
    Y. Chen and B. Gao (2012). J. Mol. Model. 18, 2043–2054.CrossRefGoogle Scholar
  21. 21.
    P. Nematollahi and M. D. Esrafili (2016). RSC Adv. 6, 59091–59099.CrossRefGoogle Scholar
  22. 22.
    S.-Y. Xie, W. Wang, and K. S. Fernando (2005). Chem. Commun. 29, 3670–3672.CrossRefGoogle Scholar
  23. 23.
    S. Saha and T. C. Dinadayalane (2013). Chem. Phys. Lett. 565, 69–73.CrossRefGoogle Scholar
  24. 24.
    P. Singla, S. Singhal, and N. Goel (2013). Appl. Surf. Sci. 283, 881–887.CrossRefGoogle Scholar
  25. 25.
    M. D. Esrafili and R. Nurazar (2014). Appl. Surf. Sci. 314, 90–96.CrossRefGoogle Scholar
  26. 26.
    Z. Wang, H. He, W. Slough, and R. Pandey (2015). J. Phys. Chem. C 119, 25965–25973.CrossRefGoogle Scholar
  27. 27.
    A. Rubio, J. L. Corkill, and M. L. Cohen (1994). Phys. Rev. B 49, 5081.CrossRefGoogle Scholar
  28. 28.
    J. Andzelm and C. Kolmel (1995). J. Chem. Phys. 103, 9312–9320.CrossRefGoogle Scholar
  29. 29.
    L. H. Gan and J. Q. Zhao (2009). Physica E 41, 1249–1252.CrossRefGoogle Scholar
  30. 30.
    S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553–566.CrossRefGoogle Scholar
  31. 31.
    M. D. Esrafili and N. Saeidi (2017). Appl. Sci. Res. 403, 43–50.Google Scholar
  32. 32.
    B. Kaewruksa, R. Wanbayor, and V. Ruangpornvisuti (2012). J. Mol. Struct. 1012, 50–55.CrossRefGoogle Scholar
  33. 33.
    M. D. Esrafili and N. Saeidi (2015). Physica E 74, 382–387.CrossRefGoogle Scholar
  34. 34.
    M. D. Esrafili, P. Nematollahi, and H. Abdollahpour (2016). Appl. Surf. Sci. 378, 418–425.CrossRefGoogle Scholar
  35. 35.
    M. D. Esrafili, P. Nematollahi, and R. Nurazar (2016). Superlattices Microstruct. 92, 60–67.CrossRefGoogle Scholar
  36. 36.
    M. D. Esrafili and N. Saeidi (2017). Chem. Phys. Lett. 671, 49–55.CrossRefGoogle Scholar
  37. 37.
    A. S. Shalabi, H. O. Taha, K. A. Soliman, and S. Abeld Aal (2014). J. Power Sources 271, 32–41.CrossRefGoogle Scholar
  38. 38.
    J. Shen, M. Wang, L. Zhao, P. Zhang, J. Jiang, and J. Liu (2018). J. Power Sources 389, 160–168.CrossRefGoogle Scholar
  39. 39.
    A. Hosseinian, P. Delir Kheirollahi-Nezhad, and S. Ahmadi (2018). Physica E 100, 63–68.CrossRefGoogle Scholar
  40. 40.
    Gh Barati Darband and M. Aliofkhazraei (2018). Int. J. Hydrog. Energy 24, 1–7.Google Scholar
  41. 41.
    D. Zhong, B. Cai, X. Wang, Z. Yang, W. Zhanga, and C. Li (2015). Nano Energy 11, 409–418.CrossRefGoogle Scholar
  42. 42.
    S. Yoon, J. Y. Yun, J. H. Lim, and B. Yoo (2017). J. Alloys Compd. 693, 964–969.CrossRefGoogle Scholar
  43. 43.
    Gh Barati Darband and A. Sabour Rouhaghdam (2017). Int. J. Hydrog. Energy 23, 1–6.Google Scholar
  44. 44.
    N. Jitendra, A. Tiwari, C. Tin, P. Fu, and L. Kin (2008). J. Power Sources 182, 510–514.CrossRefGoogle Scholar
  45. 45.
    J. Bae, N. Kulkarni, J. Zhou, J. G. Ekerdt, and C. Shih (2008). J. Cryst. Growth 310, (4), 407–4411.Google Scholar
  46. 46.
    B. Rajesh, K. R. Thampi, A. J. McEvoy, and H. J. Mathieu (2004). J. Power Sources 133, 155–161.CrossRefGoogle Scholar
  47. 47.
    H. Randall, R. Doepper, and A. Renken (1998). Appl. Catal. B Environ. 17, 357–369.CrossRefGoogle Scholar
  48. 48.
    V. Blagojevic and D. K. Bohme (2006). Int. J. Mass Spectrom. 254, 152–154.CrossRefGoogle Scholar
  49. 49.
    R. Gholizadeh and Y. Yu (2015). Appl. Surf. Sci. 357, 1187–1195.CrossRefGoogle Scholar
  50. 50.
    J. M. A. Harmsen, J. H. B. J. Hoebink, and J. C. Schouten (2001). Catal. Lett. 71, 1–2.CrossRefGoogle Scholar
  51. 51.
    S. Wannakao, T. Nongnual, and T. Maihom (2012). J. Phys. Chem. C 116, 16992–16998.CrossRefGoogle Scholar
  52. 52.
    X. Xu, E. Yang, J. Li, Y. Li, and W. Chen (2009). Chem. Cat. Chem. 1, 384–392.Google Scholar
  53. 53.
    V. P. Zhdanov, Y. Ma, and T. Matsushima (2005). Surf. Sci. 583, 36–45.CrossRefGoogle Scholar
  54. 54.
    M. D. Esrafili and E. Vessally (2018). Surf. Sci. 667, 105–111.CrossRefGoogle Scholar
  55. 55.
    P. Maitarad, S. Namuangruk, D. Zhang, L. Shi, H. Li, L. Huang, B. Boekfa, and M. Ehara (2014). Environ. Sci. Technol. 48, 7101–7110.CrossRefGoogle Scholar
  56. 56.
    P. Maitarad, J. Meeprasert, L. Shi, J. Limtrakul, D. Zhang, and S. Namuangruk (2016). Catal. Sci. Technol. 6, 3878–3885.CrossRefGoogle Scholar
  57. 57.
    L. Yan, Y. Liu, K. Zha, H. Li, L. Shi, D. Zhang, and A. C. S. Appl (2017). Mater. Interfaces 9, 2581–2593.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computing Science and TechnologyGuangzhou UniversityGuangzhouChina
  2. 2.Department of Biomedical Engineering, Faculty of EngineeringUniversity of IsfahanIsfahanIran
  3. 3.Tyumen Industrial UniversityTyumenRussia
  4. 4.Department of Chemistry, Faculty of ScienceUniversity of JiroftJiroftIran
  5. 5.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations