Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 131–139 | Cite as

First-Principles Study of the Structures and Electronic Properties for NinGe (n = 19–29) Clusters

  • Wei Song
  • Zhe Fu
  • Tian-hui Liu
  • Jin-long Wang
  • Bin Wang
  • Wei ZhangEmail author
  • Yuan YuanEmail author
Original Paper
  • 28 Downloads

Abstract

Using the density functional theory calculations with the PBE exchange–correlation energy functional, we have studied the magnetic property and electronic properties such as binding energy, embedding energy, charge transfer, ionization potential and electron affinity of the NinGe (n = 19–29) neutral and ionic clusters. The addition of Ge atom can decrease the magnetic moments of Nin clusters except Ni28 and Ni 28 +/− . The charge is transferred from Ge atom to Ni clusters. And the local maxima value has appeared at Ni25Ge cluster. Both the calculated ionization potential and electron affinity exhibit an oscillating behavior as the cluster size increases.

Keywords

First-principle Magnetic property Charge transfer Ionization potential Electron affinity 

Notes

Acknowledgements

This work is supported by the Natural Science Foundation of He’nan Department of Education (Grant Nos.: 15B150010; 18B430012 and 15A140032). This work is also supported by Xinxiang University Doctor Initial Research Program (Grant Nos.: 1366020018 and 1366020039) and Science and Technology Innovation Fund of Xinxiang University (Grant Nos.: 15ZP01 and 15ZB25). The computational resource is partly supported by the Performance Computing Center of Jilin University, China.

References

  1. 1.
    C. J. Feng and L. L. Cai (2014). Comput. Theor. Chem. 1042, 57.CrossRefGoogle Scholar
  2. 2.
    K. Dhaka, R. Trivedi, and D. Bandyopadhyay (2013). J. Mol. Model. 19, 1473.CrossRefGoogle Scholar
  3. 3.
    Z. W. Ma and B. X. Li (2015). Comput. Theor. Chem. 1068, 88.CrossRefGoogle Scholar
  4. 4.
    T. Mohri (2015). J. Mater. Sci. 50, 7705.CrossRefGoogle Scholar
  5. 5.
    J. Teeriniemi, J. Huisman, P. Taskinen, and K. Laasonen (2015). J. Alloys Compd. 652, 371.CrossRefGoogle Scholar
  6. 6.
    J. X. Zhu, P. Cheng, N. Wang, and S. P. Huang (2015). Comput. Theor. Chem. 1071, 9.CrossRefGoogle Scholar
  7. 7.
    N. S. Venkataramanan, R. Sahara, H. Mizuseki, and Y. Kawazoe (2010). J. Phys. Chem. A 114, 5049.CrossRefGoogle Scholar
  8. 8.
    J. A. Mary, A. Manikandan, L. J. Kennedy, M. Bououdina, R. Sundaram, and J. J. Vijaya (2014). Trans. Nonferrous Met. Soc. 24, 1467.CrossRefGoogle Scholar
  9. 9.
    B. R. Wang, H. Y. Han, and Z. Xie (2014). J. Mol. Struct. 1062, 174.CrossRefGoogle Scholar
  10. 10.
    C. M. Tang, M. Y. Liu, W. H. Zhu, and K. M. Deng (2011). Comput. Theor. Chem. 969, 56.CrossRefGoogle Scholar
  11. 11.
    N. Kapila, V. K. Jindal, and H. Sharma (2011). Physica B 406, 4612.CrossRefGoogle Scholar
  12. 12.
    A. Chikhaoui, K. Haddab, S. Bouarab, and A. Vega (2011). J. Phys. Chem. A 115, 13997.CrossRefGoogle Scholar
  13. 13.
    X. J. Deng, X. Y. Kong, X. L. Xu, H. G. Xu, and W. J. Zheng (2016). Chin. J. Chem. Phys. 29, 123.CrossRefGoogle Scholar
  14. 14.
    J. M. Goicoechea and J. E. McGrady (2015). Dalton Trans. 44, 6755.CrossRefGoogle Scholar
  15. 15.
    Z. El-Bayyari (2005). J. Mol. Struct. (Theochem) 716, 165.CrossRefGoogle Scholar
  16. 16.
    Z. Xie, Q. M. Ma, Y. Liu, and Y. C. Li (2005). Phys. Lett. A 342, 459.CrossRefGoogle Scholar
  17. 17.
    W. Song, W. C. Lu, Q. J. Zang, C. Z. Wang, and K. M. Ho (2012). Int. J. Quantum Chem. 112, 1717.CrossRefGoogle Scholar
  18. 18.
    W. Song, W. C. Lu, C. Z. Wang, and K. M. Ho (2011). Comput. Theor. Chem. 978, 41.CrossRefGoogle Scholar
  19. 19.
    G. Kresse and J. Hafner (1993). Phys. Rev. B 47, 558.CrossRefGoogle Scholar
  20. 20.
    G. Kresse and J. Furthmuller (1996). Phys. Rev. B 54, 11169.CrossRefGoogle Scholar
  21. 21.
    M. B. Abreu, A. C. Reber, and S. N. Khanna (2014). J. Phys. Chem. Lett. 5, 3492.CrossRefGoogle Scholar
  22. 22.
    D. Bandyopadhyay and P. Sen (2010). J. Phys. Chem. A 114, 1835.CrossRefGoogle Scholar
  23. 23.
    S. N. Khanna, B. Rao, and P. Jena (2002). Phys. Rev. Lett. 89, 016803.CrossRefGoogle Scholar
  24. 24.
    D. Bandyopadhyay, P. Kaur, and P. Sen (2010). J. Phys. Chem. A 114, 12986.CrossRefGoogle Scholar
  25. 25.
    R. Trivedi, K. Dhaka, and D. Bandyopadhyay (2014). RSC Adv. 4, 64825.CrossRefGoogle Scholar
  26. 26.
    D. Bandyopadhyay (2008). J. Appl. Phys. 104, 084308.CrossRefGoogle Scholar
  27. 27.
    M. Kumar, N. Bhattacharyya, and D. Bandyopadhyay (2012). J. Mol. Model. 18, 405.CrossRefGoogle Scholar
  28. 28.
    J. T. Lau, A. Föhlisch, M. Martins, R. Nietubyc, M. Reif, and W. Wurth (2002). New J. Phys. 4, 98.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Electronic Engineering DepartmentXinxiang UniversityXinxiangPeople’s Republic of China
  2. 2.Institute of Theoretical ChemistryJilin UniversityChangchunPeople’s Republic of China
  3. 3.School of Basic ScienceChangchun University of TechnologyChangchunPeople’s Republic of China
  4. 4.Electronic Information Products Supervision Inspection Institute of Jilin ProvinceChangchunPeople’s Republic of China

Personalised recommendations