Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 77–82 | Cite as

Segregation Effect and Its Influence on the Stability and Electronic Properties of Icosahedral CuxAg13−x (x = 0–13) Clusters

  • Bai Fan
  • Gui-Xian Ge
  • Guang-Hou Wang
  • Jian-guo WanEmail author
Original Paper
  • 86 Downloads

Abstract

The icosahedral CuxAg13−x (x = 0–13) clusters are calculated using an effective sampling method and first-principle calculations based on density functional theory. And the segregation effect and its influence on the stability and electronic properties of the clusters are investigated. The calculation results show that the stability of CuxAg13−x greatly depends on the occupation position of Cu atoms and their segregation degree. The HOMO–LUMO gap of CuxAg13−x is closely related to the segregation degree of Cu atoms as well as the composition ratio between Cu and Ag. And an optimized Cu7Ag6 cluster, in which Cu atoms have the largest segregation degree, is found to be the largest HOMO–LUMO gap. By analyzing the local density of states, bond strength, bond length and bond ratio, we reveal the origin of the segregation effect and its influence on the HOMO–LUMO gap of CuxAg13−x. The results presented in this work are helpful to design the bimetallic clusters with stable structures and desired electronic properties.

Keywords

Segregation effect Cu–Ag bimetallic clusters First-principle calculations 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11464038, 51472113). We are also grateful to the High Performance Computing Center of Nanjing University for doing the numerical calculations in this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    W. Li and F. Chen (2014). Eur. Phys. J. D 68, 91.CrossRefGoogle Scholar
  2. 2.
    D. A. Kilimis and D. G. Papageorgiou (2010). Eur. Phys. J. D 56, 189.CrossRefGoogle Scholar
  3. 3.
    D. Bochicchio and R. Ferrando (2010). Nano Lett. 10, 4211.CrossRefGoogle Scholar
  4. 4.
    I. Atanasov, R. Ferrando, and R. L. Johnston (2014). J. Phys. Condens. Matter 26, 275301.CrossRefGoogle Scholar
  5. 5.
    M. Pellarin, I. Issa, C. Langlois, M.-A. Lebeault, J. L. Ramade, J. Lermé, M. Broyer, and E. Cottancin (2015). J. Phys. Chem. C 119, 5002.CrossRefGoogle Scholar
  6. 6.
    R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.CrossRefGoogle Scholar
  7. 7.
    R. Xiong, D. Die, Y. G. Xu, B. X. Zheng, and Y. C. Fu (2018). Phys. Chem. Chem. Phys. 20, 15824.CrossRefGoogle Scholar
  8. 8.
    A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck, and R. L. Johnston (2005). J. Chem. Phys. 122, 194308.CrossRefGoogle Scholar
  9. 9.
    H. C. Peng, W. H. Qi, S. Q. Li, and W. H. Ji (2015). J. Phys. Chem. C 119, 2186.CrossRefGoogle Scholar
  10. 10.
    M. Molayem, V. G. Grigoryan, and M. Springborg (2011). J. Phys. Chem. C 115, 22148.CrossRefGoogle Scholar
  11. 11.
    C. P. Vinod, K. R. Harikumar, G. U. Kulkarni, and C. N. R. Rao (2000). Top. Catal. 11–12, 293.CrossRefGoogle Scholar
  12. 12.
    W. Li and F. Chen (2014). Comput. Mater. Sci. 81, 587.CrossRefGoogle Scholar
  13. 13.
    Y. Rao, Y. M. Lei, X. Y. Cui, Z. W. Liu, and F. Y. Chen (2013). J. Alloys Compd. 565, 50.CrossRefGoogle Scholar
  14. 14.
    W. Q. Ma and F. Y. Chen (2012). J. Alloys Compd. 541, 79.CrossRefGoogle Scholar
  15. 15.
    W. Li and F. Chen (2013). J. Nanopart. Res. 15, 1809.CrossRefGoogle Scholar
  16. 16.
    T. W. Yen and S. K. Lai (2016). J. Magn. Magn. Mater. 397, 295.CrossRefGoogle Scholar
  17. 17.
    B. Fan, G. X. Ge, C. H. Jiang, G. H. Wang, and J. G. Wan (2017). Sci. Rep. 7, 9539.CrossRefGoogle Scholar
  18. 18.
    F. Baletto, C. Mottet, and R. Ferrando (2002). Phys. Rev. B 66, 155420.CrossRefGoogle Scholar
  19. 19.
    G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.CrossRefGoogle Scholar
  20. 20.
    G. Kresse and D. Joubert (1999). Phys. Rev. B 59, 1758.CrossRefGoogle Scholar
  21. 21.
    P. E. Blöchl (1994). Phys. Rev. B 50, 17953.CrossRefGoogle Scholar
  22. 22.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bai Fan
    • 1
  • Gui-Xian Ge
    • 2
  • Guang-Hou Wang
    • 1
  • Jian-guo Wan
    • 1
    • 3
    Email author
  1. 1.National Laboratory of Solid State Microstructures, Department of PhysicsNanjing UniversityNanjingChina
  2. 2.Key Laboratory of Ecophysics, Department of Physics, College of ScienceShihezi UniversityXinjiangChina
  3. 3.Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations