Journal of Cluster Science

, Volume 30, Issue 1, pp 45–51 | Cite as

Structure–Property Relationship and Systematic Study of a Series of Terpyridine Based Nonlinear Optical Compounds: DFT Computation of Interactive Design

  • Muhammad Ramzan Saeed Ashraf JanjuaEmail author
Original Paper


The objective of this research work is to study the nonlinear optical (NLO) response of terpyridine ligand complexes. Terpyridine ligand based compounds were studied through quantum chemical calculations by using B3LYP/6-31 g (d,p) basis sets. Density functional theory (DFT) calculations were performed to examine nonlinear optical properties of these newly designed compounds. Triphenylamine as electron donor and terpyridine ligand as an electron acceptor were connected directly. The π-spacers were also used to connect the donor and acceptor to increase conjugation. Preparation and characterization of novel compounds or materials for NLO, especially for second harmonic generation (SHG), based on hydrogen-bonded compounds of organic nitrogen containing bases such as terpyridine is used in this research work. Terpyridine ligand has ability to stabilize the complexes. Chelation and supramolecular organization play key role in designing new second-order NLO materials/compounds. NLO compounds have emerged as one of the most attractive fields of current research in view of their vital applications in areas like optical modulation, optical switching, optical logic, frequency shifting and optical data storage for the developing technologies in telecommunications and in efficient signal processing. These newly designed chromophore/compounds show high thermal stability and large optical nonlinearity. In studied compounds dye-5 has its maximum NLO response calculated to be 1967.23 a.u.

Graphical Abstract

The computed βtot values increase by increasing conjugation bridge along with the incorporation of an electron acceptor (F) at the end of terpyridine ring.


NLO response DFT Molecular modeling Fluorine 



M.R.S.A. Janjua would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Project No. SR161009.


  1. 1.
    J. P. Costes, J. F. Lamere, C. Lepetit, P. G. Lacroix, F. Dahan, and K. Nakatani (2005). Inorg. Chem. 44, (6), 1973–1982.CrossRefGoogle Scholar
  2. 2.
    S. Di Bella and I. Fragalà (2000). Synth. Met. 115, (1), 191–196.CrossRefGoogle Scholar
  3. 3.
    D. J. Williams (1984). Angewandte Chemie International Edition in English 23, (9), 690–703.CrossRefGoogle Scholar
  4. 4.
    P. Günter Nonlinear Optical Effects and Materials (Springer, Berlin, 2012).Google Scholar
  5. 5.
    P. N. Prasad and D. J. Williams Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).Google Scholar
  6. 6.
    D. S. Chemla Nonlinear Optical Properties of Organic Molecules and Crystals (Elsevier, Amsterdam, 2012).Google Scholar
  7. 7.
    M. Drozd and M. Marchewka (2005). J. Mol. Struct: Theochem 716, (1), 175–192.CrossRefGoogle Scholar
  8. 8.
    M. R. S. A. Janjua (2017). J. Iran. Chem. Soc. 1–14.Google Scholar
  9. 9.
    M. R. S. A. Janjua, M. Amin, M. Ali, B. Bashir, M. U. Khan, M. A. Iqbal, W. Guan, L. Yan, and Z. M. Su (2012). Eur. J. Inorg. Chem. 2012, (4), 705–711.CrossRefGoogle Scholar
  10. 10.
    M. R. S. A. Janjua, M. U. Khan, B. Bashir, M. A. Iqbal, Y. Song, S. A. R. Naqvi, and Z. A. Khan (2012). Comp. Theor. Chem. 994, 34–40.CrossRefGoogle Scholar
  11. 11.
    K. D. Singer, J. E. Sohn, L. King, H. Gordon, H. Katz, and C. Dirk (1989). JOSA B 6, (7), 1339–1350.CrossRefGoogle Scholar
  12. 12.
    J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S.-H. Jang, L. R. Dalton, and A. K.-Y. Jen (2004). J. Phys. Chem. B 108, (25), 8523–8530.CrossRefGoogle Scholar
  13. 13.
    M. R. S. A. Janjua, Z.-M. Su, W. Guan, C.-G. Liu, L.-K. Yan, P. Song, and G. Maheen (2010). Aust. J. Chem. 63, (5), 836–844.CrossRefGoogle Scholar
  14. 14.
    M. R. S. A. Janjua, W. Guan, L. Yan, Z.-M. Su, M. Ali, and I. H. Bukhari (2010). J. Mol. Graphics Modell. 28, (8), 735–745.CrossRefGoogle Scholar
  15. 15.
    J.-M. Lehn (1993). Science 260, 1762.CrossRefGoogle Scholar
  16. 16.
    Guoqiang Shi, Ying Wang, Fangfang Zhang, Bingbing Zhang, Zhihua Yang, Xueling Hou, Shilie Pan, and Kenneth R. Poeppelmeier (2017). J. Am. Chem. Soc. 139, 10645–10648.CrossRefGoogle Scholar
  17. 17.
    Xuefei Wang, Ying Wang, Bingbing Zhang, Fangfang Zhang, Zhihua Yang, and Shilie Pan (2017). Angew. Chem. Int. Ed. 56, 14119–14123.CrossRefGoogle Scholar
  18. 18.
    Bingbing Zhang, Guoqiang Shi, Zhihua Yang, Fangfang Zhang, and Shilie Pan (2017). Angew. Chem. Int. Ed. 56, 3916–3919.CrossRefGoogle Scholar
  19. 19.
    Ying Wang, Bingbing Zhang, Zhihua Yang, and Shilie Pan (2018). Angew. Chem. Int. Ed. 57, 2150–2154.CrossRefGoogle Scholar
  20. 20.
    Wu Hongping, Yu Hongwei, Zhihua Yang, Xueling Hou, Su Xin, Shilie Pan, Kenneth R. Poeppelmeier, and James M. Rondinelli (2013). J. Am. Chem. Soc. 135, 4215–4218.CrossRefGoogle Scholar
  21. 21.
    Wu Hongping, Shilie Pan, Kenneth R. Poeppelmeier, Hongyi Li, Dianzeng Jia, Zhaohui Chen, Xiaoyun Fan, Yun Yang, James M. Rondinelli, and Haosu Luo (2011). J. Am. Chem. Soc. 133, 7786–7790.CrossRefGoogle Scholar
  22. 22.
    Xiaoyu Dong, Qun Jing, Yunjing Shi, Zhihua Yang, Shilie Pan, Kenneth R. Poeppelmeier, Joshua Young, and James M. Rondinelli (2015). J. Am. Chem. Soc. 137, 9417–9422.CrossRefGoogle Scholar
  23. 23.
    Yu Hongwei, Wu Hongping, Shilie Pan, Zhihua Yang, Su Xin, and Fangfang Zhang (2012). J. Mater. Chem. 22, 9665–9670.CrossRefGoogle Scholar
  24. 24.
    Ying Wang and Shilie Pan (2016). Coord. Chem. Rev. 323, 15–35.CrossRefGoogle Scholar
  25. 25.
    Xuefei Wang, Ying Wang, Bingbing Zhang, Fangfang Zhang, Zhihua Yang, and Shilie Pan (2017). Angew. Chem. Int. Ed. 129, 14307–14311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryKing Fahd University of Petroleum & Minerals (KFUPM)DhahranKingdom of Saudi Arabia

Personalised recommendations