Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 115–121 | Cite as

NiB10, NiB11, NiB12, and NiB13+: Half-Sandwich Complexes with the Universal Coordination Bonding Pattern of σ Plus π Double Delocalization

  • Xiao-Yun Zhao
  • Xue-Mei Luo
  • Xin-Xin TianEmail author
  • Hai-Gang LuEmail author
  • Si-Dian LiEmail author
Original Paper
  • 216 Downloads

Abstract

Transition-metal-doped boron clusters have received considerable attention in recent years. The experimentally observed planar or quasi-planar C2h B10(I), C2v B11(II), C3v B12(III), and C2v B13+ (IV) are known to be boron analogs of benzene. Extensive global minimum searches and first-principles theory investigations performed herein indicate that doping these aromatic boron clusters with a nickel atom generates the closed-shell half-sandwich complexes C2v NiB10(1,1A1), Cs NiB11(2, 1A), C3v NiB12(3, 1A1), and Cs NiB13+ (4, 1A) which are all well-defined global minima of the systems with the coordination numbers of CN = 10, 11, 12, and 13, respectively. Detailed bonding analyses indicate that these Ni-doped boron complexes are effectively stabilized by coordination interactions between the Ni center and aromatic B n −/0/+ ligands (n = 10–13) and follow the universal coordination bonding pattern of σ plus π double delocalization. Molecular dynamics simulations show that, among these complex clusters, NiB11(2) behaves like a Wankel motor at room temperature with the B3 inner wheel rotating almost freely inside the quasi-rotating B8 outer bearing in a concerted mechanism, revealing typical bonding fluctuations/fluxionalities in a molecular motor due to thermal vibrations. The IR, Raman and electronic spectra of the concerned species are computationally simulated to facilitate their experimental characterizations.

Keywords

Half-sandwich complexes Wankel motor First-principles theory Structurers Bonding fluctuations 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21720102006 to S.-D. Li, 21473106 to H.-G. Lu, U1510103 to X.-X. Tian).

Supplementary material

10876_2018_1457_MOESM1_ESM.doc (10.8 mb)
Supplementary material 1 (DOC 11075 kb)

References

  1. 1.
    H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. S. Wang (2003). Angew. Chem. Int. Ed. 42, 6004.CrossRefGoogle Scholar
  2. 2.
    H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.CrossRefGoogle Scholar
  3. 3.
    A. P. Sergeeva, Z. A. Piazza, C. Romanescu, W. L. Li, A. I. Boldyrev, and L. S. Wang (2012). J. Am. Chem. Soc 134, 18065.CrossRefGoogle Scholar
  4. 4.
    W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev (2010). Nat. Chem. 2, 202.CrossRefGoogle Scholar
  5. 5.
    J. O. C. Jiménez-Halla, R. Islas, T. Heine, and G. Merino (2010). Angew. Chem. Int. Ed. 49, 5668.CrossRefGoogle Scholar
  6. 6.
    I. A. Popov, Z. A. Piazza, W. L. Li, L. S. Wang, and A. I. Boldyrev (2013). J. Chem. Phys. 139, 144307.CrossRefGoogle Scholar
  7. 7.
    W. L. Li, Y. F. Zhao, H. S. Hu, J. Li, and L. S. Wang (2014). Angew. Chem. Int. Ed. 53, 5540.CrossRefGoogle Scholar
  8. 8.
    Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, and L. S. Wang (2014). Nat. Commun. 5, 3113.CrossRefGoogle Scholar
  9. 9.
    A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev (2014). Acc. Chem. Res. 47, 1349.CrossRefGoogle Scholar
  10. 10.
    W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, and L. S. Wang (2014). J. Am. Chem. Soc. 136, 12257.CrossRefGoogle Scholar
  11. 11.
    Q. Chen, G. F. Wei, W. J. Tian, H. Bai, Z. P. Liu, H. J. Zhai, and S. D. Li (2014). Phys. Chem. Chem. Phys. 16, 18282.CrossRefGoogle Scholar
  12. 12.
    X. M. Luo, T. Jian, L. J. Cheng, W. L. Li, Q. Chen, R. Li, H. J. Zhai, S. D. Li, A. I. Boldyrev, J. Li, and L. S. Wang (2017). Chem. Phys. Lett. 683, 336.CrossRefGoogle Scholar
  13. 13.
    W. L. Li, R. Pal, Z. A. Piazza, X. C. Zeng, and L. S. Wang (2015). J. Chem. Phys. 142, 204305.CrossRefGoogle Scholar
  14. 14.
    Z. A. Piazza, I. A. Popov, W. L. Li, R. Pal, X. C. Zeng, A. I. Boldyrev, and L. S. Wang (2014). J. Chem. Phys. 141, 034303.CrossRefGoogle Scholar
  15. 15.
    H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang (2014). Nat. Chem. 6, 727.CrossRefGoogle Scholar
  16. 16.
    Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2016). J. Chem. Phys. 144, 064307.CrossRefGoogle Scholar
  17. 17.
    H. R. Li, T. Jian, W. L. Li, C. Q. Miao, Y. J. Wang, Q. Chen, X. M. Luo, K. Wang, H. J. Zhai, S. D. Li, and L. S. Wang (2016). Phys. Chem. Chem. Phys. 18, 29147.CrossRefGoogle Scholar
  18. 18.
    Q. Chen, W. J. Tian, L. Y. Feng, H. G. Lu, Y. W. Mu, H. J. Zhai, S. D. Li, and L. S. Wang (2017). Nanoscale 9, 4550.CrossRefGoogle Scholar
  19. 19.
    Q. Chen, W. L. Li, X. Y. Zhao, H. R. Li, L. Y. Feng, H. J. Zhai, S. D. Li, and L. S. Wang (2017). Eur. J. Inorg. Chem. 38, 4546–4551.CrossRefGoogle Scholar
  20. 20.
    B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang (2005). Proc. Natl. Acad. Sci. USA 102, 961.CrossRefGoogle Scholar
  21. 21.
    E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, and R. Ahlrichs (2007). Angew. Chem. Int. Ed. 46, 8503.CrossRefGoogle Scholar
  22. 22.
    G. Martínez-Guajardo, A. P. Sergeeva, A. I. Boldyrev, T. Heine, J. M. Ugalde, and G. Merino (2011). Chem. Commun. 47, 6242.CrossRefGoogle Scholar
  23. 23.
    J. Zhang, A. P. Sergeeva, M. Sparta, and A. N. Alexandrova (2012). Angew. Chem., Int. Ed. 51, 8512.CrossRefGoogle Scholar
  24. 24.
    D. Moreno, S. Pan, L. L. Zeonjuk, R. Islas, E. Osorio, G. Martínez-Guajardo, P. K. Chattaraj, T. Heine, and G. Merino (2014). Chem. Commun. 50, 8140.CrossRefGoogle Scholar
  25. 25.
    Y. J. Wang, X. Y. Zhao, Q. Chen, H. J. Zhai, and S. D. Li (2015). Nanoscale 7, 16054.CrossRefGoogle Scholar
  26. 26.
    Y. J. Wang, X. R. You, Q. Chen, L. Y. Feng, K. Wang, T. Ou, X. Y. Zhao, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys. 18, 15774.CrossRefGoogle Scholar
  27. 27.
    Y. G. Yang, D. M. Jia, Y. J. Wang, H. J. Zhai, Y. Mana, and S. D. Li (2017). Nanoscale 9, 1443.CrossRefGoogle Scholar
  28. 28.
    C. Romanescu, T. R. Galeev, W. L. Li, A. I. Boldyrev, and L. S. Wang (2013). Acc. Chem. Res. 46, 350.CrossRefGoogle Scholar
  29. 29.
    T. R. Galeev, C. Romanescu, W. L. Li, L. S. Wang, and A. I. Boldyrev (2012). Angew. Chem., Int. Ed. 51, 2101.CrossRefGoogle Scholar
  30. 30.
    T. Heine and G. Merino (2012). Angew. Chem., Int. Ed. 51, 4275.CrossRefGoogle Scholar
  31. 31.
    I. A. Popov, W. L. Li, Z. A. Piazza, A. I. Boldyrev, and L. S. Wang (2014). J. Phys. Chem. A 118, 8098.CrossRefGoogle Scholar
  32. 32.
    L. Liu, D. Moreno, E. Osorio, A. C. Castro, S. Pan, P. K. Chattaraj, T. Heine, and G. Merino (2016). RSC Adv. 6, 27177.CrossRefGoogle Scholar
  33. 33.
    W. L. Li, T. Jian, X. Chen, H. R. Li, T. T. Chen, X. M. Luo, S. D. Li, J. Li, and L. S. Wang (2017). Chem. Commun. 53, 1587.CrossRefGoogle Scholar
  34. 34.
    B. L. Chen, W. G. Sun, X. Y. Kuang, C. Lu, X. X. Xia, H. X. Shi, and G. Maroulis (2018). Inorg. Chem. 57, 343.CrossRefGoogle Scholar
  35. 35.
    L. Q. Zhao, X. Qu, Y. C. Wang, J. Lv, L. J. Zhang, Z. Y. Hu, G. R. Gu, and Y. M. Ma (2017). J. Phys.: Condens. Matter 29, 265401.Google Scholar
  36. 36.
    Y. Q. Wang, X. Wu, and J. J. Zhao (2018). J. Clust. Sci.  https://doi.org/10.1007/s10876-018-1369-3.Google Scholar
  37. 37.
    T. T. Chen, W. L. Li, T. Jian, X. Chen, J. Li, and L. S. Wang (2017). Angew. Chem. Int. Ed. 56, 6916.CrossRefGoogle Scholar
  38. 38.
    H. R. Li, H. Liu, X. Q. Lu, W. Y. Zan, X. X. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, and S. D. Li (2018). Nanoscale.  https://doi.org/10.1039/C8NR01087K.Google Scholar
  39. 39.
    A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2011). J. Chem. Phys. 134, 224304.CrossRefGoogle Scholar
  40. 40.
    X. Chen, Y. F. Zhao, L. S. Wang, and J. Li (2017). Comput. Theor. Chem. 1107, 57.CrossRefGoogle Scholar
  41. 41.
    D. J. Wales and H. A. Scheraga (1999). Science 285, 1368.CrossRefGoogle Scholar
  42. 42.
    C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158.CrossRefGoogle Scholar
  43. 43.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650.CrossRefGoogle Scholar
  44. 44.
    J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401.CrossRefGoogle Scholar
  45. 45.
    F. Li, P. Jin, D. E. Jiang, L. Wang, S. B. Zhang, J. J. Zhao, and Z. F. Chen (2012). J. Chem. Phys. 136, 074302.CrossRefGoogle Scholar
  46. 46.
    M. J. Frisch, et al. Gaussian 09, revision A.2 (Gaussian Inc., Wallingford, 2009).Google Scholar
  47. 47.
    G. D. Purvis and R. J. Bartlett (1982). J. Chem. Phys. 76, 1910.CrossRefGoogle Scholar
  48. 48.
    J. Čižek (1969). Adv. Chem. Phys. 14, 35.Google Scholar
  49. 49.
    K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head- Gordon (1989). Chem. Phys. Lett. 157, 479.CrossRefGoogle Scholar
  50. 50.
    K. Fukui (1981). Acc. Chem. Res. 14, 363.CrossRefGoogle Scholar
  51. 51.
    J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Comput. Phys. Commun. 167, 103.CrossRefGoogle Scholar
  52. 52.
    D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.CrossRefGoogle Scholar
  53. 53.
    U. Varetto Molekel 5.4.0.8 (Swiss National Supercomputing Center, Manno, 2009).Google Scholar
  54. 54.
    A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.CrossRefGoogle Scholar
  55. 55.
    W. N. Lipscomb (1966). Science 153, 373.CrossRefGoogle Scholar
  56. 56.
    S. Jalife, L. Liu, S. Pan, J. L. Cabellos, E. Osorio, C. Lu, T. Heine, K. J. Donald, and G. Merino (2016). Nanoscale 8, 17639.CrossRefGoogle Scholar
  57. 57.
    G. J. Wang, M. F. Zhou, J. T. Goettel, G. J. Schrobilgen, J. Su, J. Li, T. Schloder, and S. Riedel (2014). Nature 514, 475.CrossRefGoogle Scholar
  58. 58.
    M. R. Fagiani, X. W. Song, P. Petkov, S. Debnath, S. Gewinner, W. Schöllkopf, T. Heine, A. Fielicke, and K. R. Asmis (2017). Angew. Chem. Int. Ed. 56, 501.CrossRefGoogle Scholar
  59. 59.
    R. Bauernschmitt and R. Ahlrichs (1996). Chem. Phys. Lett. 256, 454.CrossRefGoogle Scholar
  60. 60.
    H. R. Li, X. X. Tian, X. M. Luo, M. Yan, Y. W. Mu, H. G. Lu, and S. D. Li (2017). Sci. Rep. 7, 5701.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular ScienceUniversity of ShanxiTaiyuanChina

Personalised recommendations