Journal of Cluster Science

, Volume 30, Issue 1, pp 31–44 | Cite as

Stability, Electronic and Magnetic Properties of Mn-Doped Copper Clusters: A Meta-GGA Functional Investigation

  • Mouhssin Boulbazine
  • Abdel-Ghani BoudjahemEmail author
Original Paper


DFT calculations were performed to investigate the stability, reactivity, electronic and magnetic properties of the CunMn (n = 2–12) clusters. The obtained results show that the Cu6Mn and Cu9Mn clusters are found more stable than the neighboring clusters. The calculated HOMO–LUMO energy gaps vary from 0.471 to 2.444 eV, suggesting a semiconductor-like feature of these binary clusters. The condensed Fukui function (f k + ) for nucleophile attack has been calculated for each atom in CunMn clusters, and the results exhibit that the reactivity was mainly localized at the Mn atom. Accordingly, the CunMn clusters are more favourable to react with a nucleophilic reagent. On the basis of the ELF analysis, a low local localization function has been obtained between the atoms in clusters, indicating an ionic character of the chemical bonds in the CunMn clusters. The analysis of the magnetic properties indicates that the Cu atoms in CunMn clusters show an antiferromagnetic alignment with respect to the Mn atom’s magnetic moment, and the magnetic moment of these clusters mostly originates from Mn atom. Moreover, NPA analysis show that the 3d electrons of Mn atom play a substantial role in the magnetic properties for CunMn clusters, and the contribution of the 4s electrons is little.


DFT CunMn clusters Chemical reactivity Electronic and magnetic properties 

Supplementary material

10876_2018_1456_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 kb)


  1. 1.
    A. J. Cox, J. G. Louderback, and L. A. Bloomfield (1993). Experimental observation of magnetism in rhodium clusters. Phys. Rev. Lett. 71, 923–926.CrossRefGoogle Scholar
  2. 2.
    B. Palpant, B. Prevel, J. Lerme, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J. L. Vialle, and M. Broyer (1998). Optical properties of gold clusters in the size range 2–4 nm. Phys. Rev. B 57, 1963.CrossRefGoogle Scholar
  3. 3.
    M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus (1990). Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 65, 1623–1639.CrossRefGoogle Scholar
  4. 4.
    A. Soltani and A. Boudjahem (1047). Stabilities, electronic and magnetic properties of small Rhn clusters: a DFT approach. Comput. Theor. Chem. 2014, 6–14.Google Scholar
  5. 5.
    A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield (1994). Magnetism in 4d-transition metal clusters. Phys. Rev. B 49, 12295–12298.CrossRefGoogle Scholar
  6. 6.
    A. Boudjahem, A. Redjel, and T. Mokrane (2012). Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation. J. Ind. Eng. Chem. 18, 303–308.CrossRefGoogle Scholar
  7. 7.
    H. H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh, and S. H. Tang (1997). Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir. 13, 172–175.CrossRefGoogle Scholar
  8. 8.
    M. Chettibi, A. Boudjahem, and M. Bettahar (2011). Synthesis of Ni/SiO2 nanoparticles for catalytic benzene hydrogenation. Transit. Metal Chem. 36, 163–169.CrossRefGoogle Scholar
  9. 9.
    J. Y. Zhang, Q. Fang, A. J. Kenyon, and I. W. Boyd (2003). Visible photoluminescence from nanocrystalline Ge grown at room temperature by photo-oxidation of SiGe using a 126 nm lamp. Appl. Surf. Sci. 208–209, 364–368.Google Scholar
  10. 10.
    C. D. Dong and X. G. Gong (2008). Magnetism enhanced layer-like structure of small cobalt clusters. Phys. Rev. B 78, 020409.CrossRefGoogle Scholar
  11. 11.
    K. R. GopidasJ, M. Whitesell, and M. A. Fox (2003). Synthesis, characterization and catalytic applications of a palladium-nanoparticles-cored dendrimer. Nano. Lett. 3, 1757–1760.CrossRefGoogle Scholar
  12. 12.
    T. Mokrane, A. Boudjahem, and M. Bettahar (2016). Benzene hydrogenation over alumina-supported nickel nanoparticles prepared by polyol method. RSC Adv. 6, 59858–59864.CrossRefGoogle Scholar
  13. 13.
    F. Nador, Y. Moglie, C. Vitale, M. Yus, F. Alonso, and G. Radivoy (2010). Reduction of polycyclic aromatic hydrocarbons promoted by cobalt or manganese nanoparticles. Tetrahedron. 66, 4318–4325.CrossRefGoogle Scholar
  14. 14.
    C.-H. Tu, A.-Q. Wang, M.-Y. Zheng, X.-D. Wang, and T. Zhang (2006). Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. Appl. Catal. A 297, 40–47.CrossRefGoogle Scholar
  15. 15.
    D. Li, Y. Cai, C. Chen, X. Lin, and L. Jiang (2016). Magnesium-aluminium mixed metal oxide supported copper nanoparticles as catalysts for water–gas shift reaction. Fuel. 184, 382–389.CrossRefGoogle Scholar
  16. 16.
    M. B. Knickelbein (2001). Experimental observation of superparamagnetism in manganese clusters. Phys. Rev. Lett. 86, 5255–5256.CrossRefGoogle Scholar
  17. 17.
    P. C. Patel, S. Ghosh, and P. C. Srivastara (2017). Effect of impurity concentration on optical and magnetic properties in ZnS: Cu nanoparticles. Physica E 93, 148–152.CrossRefGoogle Scholar
  18. 18.
    V. S. Marakatti, S. C. Sarma, B. Joseph, D. Banerjee, and S. C. Peter (2017). Synthetically tuned atomic ordering in PdCu nanoparticles with enhanced catalytic activity towards solvent free benzylamine oxidation. ACS Appl. Mater. Interfaces 9, 3602–3615.CrossRefGoogle Scholar
  19. 19.
    X. Liu, A. Wang, X. Wang, C.-Y. Mou, and T. Zhang (2008). Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem. Commun. 27, 3187–3189.CrossRefGoogle Scholar
  20. 20.
    J. Liu, L. Zhang, J. Zhang, T. Liu, and X. S. Zhao (2013). Bimetallic ruthenium–copper nanoparticles embedded in mesoporous carbon as an effective hydrogenation catalyst. Nanoscale. 5, 11044–11050.CrossRefGoogle Scholar
  21. 21.
    R. Habibpour and R. Vaziri (2016). Investigation of structural and electronic properties of small AunCum (n + m ≤ 5) nanoclusters for oxygen adsorption. Int. J. Nano Dimens. 7, 208–224.Google Scholar
  22. 22.
    H. T. Pham, N. T. Cuong, N. M. Tam, and N. T. Tung (2016). A systematic investigation on CrCun clusters, with n = 9–16: noble gas and tunable magnetic property. J. Phys. Chem. A 37, 7335–7343.CrossRefGoogle Scholar
  23. 23.
    X. Dong, L. Guo, C. Wen, N. Ren, Z. Cao, N. Liu, and L. L. Guo (2015). Mechanism of CO preferential oxidation catalyzed by CunPt (n = 3–12) clusters: a DFT study. Res. Chem. Intermed. 41, 10049–10066.CrossRefGoogle Scholar
  24. 24.
    E. Florez, F. Mondragon, and P. Fuentealba (2006). Effect of Ni and Pd on the geometry, electronic properties, and active sites of copper clusters. J. Phys. Chem. B 110, 13793–13798.CrossRefGoogle Scholar
  25. 25.
    J. Wang, G. Wang, X. Chen, W. Lu, and J. Zhao (2002). Structure and magnetic properties of Co–Cu bimetallic clusters. Phys. Rev. B 66, 014419.CrossRefGoogle Scholar
  26. 26.
    H.-Q. Wang, X.-Y. Kuang, and H.-F. Li (2010). Density functional study of structural and electronic properties of bimetallic copper–gold clusters: comparison with pure and doped gold clusters. Phys. Chem. Chem. Phys. 12, 5156–5165.CrossRefGoogle Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, revision D.01 (Gaussian, Inc., Wallingford, 2013).Google Scholar
  28. 28.
    J. Tao, J. P. Perdew, V. N. Staroverov, and E. Gustavo (2003). Scuseria, climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401.CrossRefGoogle Scholar
  29. 29.
    M. Dolg, U. Weding, H. Stoll, and H. Preuss (1987). Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866–872.CrossRefGoogle Scholar
  30. 30.
    S.-J. Lu, X.-L. Xu, G. Feng, H.-G. Xu, and W.-J. Zheng (2006). Structural and electronic properties of AuSin- (n = 4–12) clusters: photoelectron spectroscopy and ab initio calculations. J. Phys. Chem. C 120, 25628–25637.CrossRefGoogle Scholar
  31. 31.
    E. M. Dore and J. T. Lyon (2016). The structures of silicon clusters doped with two gold atoms, SinAu2 (n = 1–10). J. Clus. Sci. 27, 1365–1381.CrossRefGoogle Scholar
  32. 32.
    A. Posada-Amirillas and R. Pacheco-Conteras (2016). Computational studies of stable hexanuclear CulAgmAun (l + m + n = 6; l, m, n > 0) clusters. Int. J. Quantum Chem. 116, 1006–1015.CrossRefGoogle Scholar
  33. 33.
    R. S. Ram, C. N. Jarman, and P. F. Bernath (1992). Fourier transform emission spectroscopy of the copper dimer. J. Mol. Spectrosc. 156, 468–486.CrossRefGoogle Scholar
  34. 34.
    E. Rohling and J. J. Valentini (1986). UV laser excited fluorescence spectroscopy of the jet-cooled copper dimer. J. Chem. Phys. 84, 6560–6566.CrossRefGoogle Scholar
  35. 35.
    G. L. Gustev and C. W. Bauschlicher (2003). Chemical bonding, electron affinity, and ionization energies of the homonuclear 3d metal dimers. J. Phys. Chem. A 107, 4755–4767.CrossRefGoogle Scholar
  36. 36.
    P. Jaque and A. Tor-Labbe (2002). Characterization of copper clusters through the use of density functional theory reactivity descriptors. J. Chem. Phys. 117, 3208–3218.CrossRefGoogle Scholar
  37. 37.
    A. Poater, A. Duran, P. Jaque, A. Torro-labbé, and M. Sola (2006). Molecular structure and bonding of copper cluster monocarbonyls CunCO (n = 1–9). J. Chem. B 110, 6526–6536.CrossRefGoogle Scholar
  38. 38.
    S. Ganguly, M. Kabir, S. Datta, B. Sanyal, and A. Mookerjee (2008). Magnetism in small bimetallic Mn–Co clusters. Phys. Rev. B 78, 014402.CrossRefGoogle Scholar
  39. 39.
    P. Bobadova-Parvanova, K. A. Jackson, S. Srinivas, and M. Horoi (2005). Structure, bonding, and magnetism in manganese clusters. J. Chem. Phys. 122, 014310.CrossRefGoogle Scholar
  40. 40.
    M. D. Morse (1986). Clusters of transition-metal atoms. Chem. Rev. 86, 1049–1109.CrossRefGoogle Scholar
  41. 41.
    J.-G. Yao, Z.-Y. Tian, and Y.-X. Wang (2011). The electronic and magnetic properties of MnScn (n = 2–10) clusters. Mol. Phys. 109, 1957–1965.CrossRefGoogle Scholar
  42. 42.
    W. Bouderbala, A. Boudjahem, and A. Soltani (1047). Geometries, stabilities, electronic and magnetic properties of small PdnIr (n = 1–8) clusters from first-principles calculations. Mol. Phys. 2014, 6–14.Google Scholar
  43. 43.
    A. Soltani, A. Boudjahem, and M. Bettahar (2016). Electronic and magnetic properties of small RhnCa (n = 1–9) clusters: a DFT study. Int. J. Quantum Chem. 116, 346–356.CrossRefGoogle Scholar
  44. 44.
    B.-R. Wang, H.-Y. Han, and Z. Xie (1062). Structural and magnetic properties of small NinMn clusters. J. Mol. Struct. 2014, 174–178.Google Scholar
  45. 45.
    M. Boulbazine, A. Boudjahem, and M. Bettahar (2017). Stabilities, electronic and magnetic properties of Cu-doped nickel clusters: a DFT investigation. Mol. Phys. 115, 2495–2507.CrossRefGoogle Scholar
  46. 46.
    W. Bouderbala and A. Boudjahem (2014). First-principles calculations of small PdnAlm (n + m ≤ 6) clusters. Physica B 454, 217–223.CrossRefGoogle Scholar
  47. 47.
    A. Boudjahem, M. Boulbazine, and M. Chettibi (2018). Electronic, magnetic properties of Os-doped rhodium clusters: a theoretical study. J. Supercond. Nov. Magn.. Scholar
  48. 48.
    C. Yu, J. Fu, M. Muzzio, T. Shen, D. Su, J. Zhu, and S. Sun (2017). CuNi nanoparticles assembled on grapheme for catalytic methanolysis of ammonia borane and hydrogenation of nitro/nitrile compounds. Chem. Mater. 29, 1413–1418.CrossRefGoogle Scholar
  49. 49.
    A. Boudjahem, W. Bouderbala, and M. Bettahar (2011). Benzene hydrogenation over Ni–Cu/SiO2 catalysts prepared by aqueous hydrazine reduction. Fuel Process. Technol. 92, 500–506.CrossRefGoogle Scholar
  50. 50.
    A. Boudjahem, M. Chettibi, S. Monteverdi, and M. Bettahar (2009). Acetylene hydrogenation over Ni–Cu nanoparticles supported on silica prepared by aqueous hydrazine reduction. J. Nanosci. Nanotechnol. 9, 3546–3554.CrossRefGoogle Scholar
  51. 51.
    T. Lu and F. W. Chen (2012). Multiwfn: a multifunctional wave function analyzer. J. Comput. Chem. 33, 580–592.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanomaterials Chemistry GroupUniversity of GuelmaGuelmaAlgeria
  2. 2.Laboratory of Applied ChemistryUniversity of GuelmaGuelmaAlgeria

Personalised recommendations