Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 25–30 | Cite as

Structure and Magnetic Properties of a 3d–4f-Doped Hexagonal Heterometallic Cluster

  • Qi-Zhen Yang
  • Min-Jia Zheng
  • Hua-Hong ZouEmail author
  • Hai-Ling Wang
  • Dong-Cheng LiuEmail author
  • Yan-Cheng LiuEmail author
  • Fu-Pei Liang
Original Paper
  • 63 Downloads

Abstract

2-(2,3-Dihydroxpropyliminomethyl)6-methoxyphenol (H3L), trimethylacetic acid (Hpiv), Dy(NO3)3·6H2O and Co(NO3)2·6H2O were reacted at 80 °C to obtain a heterometallic hexanuclear cluster [Dy2Co4(L)2(μ3-OH)2(piv)8]·2Hpiv·2H2O (1). X-ray crystallographic study reveals that complex 1 displays a central planar butterfly motif consisting of the Dy 2 III Co 2 II , with another two CoII ions ‘‘capping’’ around the periphery of the butterfly. Magnetic studies suggest that 1 displays little out-of-phase component of the ac-susceptibilities in zero dc-field, and observed weak imaginary component.

Keywords

Hexanuclear cluster Heterometallic Crystal structure Magnetic properties 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21601038 and 51572050), Guangxi Natural Science Foundation (Nos. 2015GXNSFDA139007 and 2016GXNSFAA380085), Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials (EMFM20162107).

Supplementary material

10876_2018_1455_MOESM1_ESM.docx (130 kb)
Supplementary material 1 (DOCX 129 kb)
10876_2018_1455_MOESM2_ESM.cif (25 kb)
Supplementary material 2 (CIF 25 kb)
10876_2018_1455_MOESM3_ESM.pdf (185 kb)
Supplementary material 3 (PDF 184 kb)

References

  1. 1.
    T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes (2005). Nat. Mater. 4, 450.CrossRefGoogle Scholar
  2. 2.
    R. Clerac, H. Miyasaka, M. Yamashita, and C. Coulon (2002). J. Am. Chem. Soc. 124, 12837.CrossRefGoogle Scholar
  3. 3.
    X.-J. Kong, L.-S. Long, Z. Zheng, R.-B. Huang, and L.-S. Zheng (2010). Acc. Chem. Res. 43, 201.CrossRefGoogle Scholar
  4. 4.
    J. F. Bai, A. V. Virovets, and M. Scheer (2003). Science 300, 781.CrossRefGoogle Scholar
  5. 5.
    M. J. Moses, J. C. Fettinger, and B. W. Eichhorn (2003). Science 300, 778.CrossRefGoogle Scholar
  6. 6.
    E. G. Mednikov, M. C. Jewell, and L. F. Dahl (2007). J. Am. Chem. Soc. 129, 11619–11630.CrossRefGoogle Scholar
  7. 7.
    J. Chen, Q.-F. Zhang, T. A. Bonaccorso, P. G. Williard, and L.-S. Wang (2014). J. Am. Chem. Soc. 136, 92.CrossRefGoogle Scholar
  8. 8.
    H. F. Qian, D. E. Jiang, G. Li, C. Gayathri, A. Das, R. R. Gil, and R. C. Jin (2012). J. Am. Chem. Soc. 134, 16159.CrossRefGoogle Scholar
  9. 9.
    T. Komatsu and A. Tamura (2008). J. Catal. 258, 306.CrossRefGoogle Scholar
  10. 10.
    Y. Wang, X.-K. Wan, L. Ren, H. Su, G. Li, S. Malola, S. Lin, Z. Tang, H. Häkkinen, B. K. Teo, Q.-M. Wang, and N. Zheng (2016). J. Am. Chem. Soc. 138, 3278.CrossRefGoogle Scholar
  11. 11.
    C. Zhang, Y. Xiao, Y. Qin, Q. Sun, and S. Zhang (2018). J. Solid State Chem. 261, 22.CrossRefGoogle Scholar
  12. 12.
    S. X. Wang, X. M. Meng, A. Das, T. Li, Y. B. Song, T. T. Cao, X. Y. Zhu, M. Z. Zhu, and R. C. Jin (2014). Angew. Chem. Int. Ed. 53, 2376.CrossRefGoogle Scholar
  13. 13.
    W. J. Du, S. Jin, L. Xiong, M. Chen, J. Zhang, X. J. Zou, Y. Pei, S. X. Wang, and M. Z. Zhu (2017). J. Am. Chem. Soc. 139, 1618.CrossRefGoogle Scholar
  14. 14.
    X. Kang, S. X. Wang, Y. B. Song, S. Jin, G. D. Sun, H. Z. Yu, and M. Z. Zhu (2016). Angew. Chem. Int. Ed. 55, 3611.CrossRefGoogle Scholar
  15. 15.
    S. Petrie and R. Stranger (2002). Inorg. Chem. 41, 2341.CrossRefGoogle Scholar
  16. 16.
    S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, and J. Mrozinski (2004). J. Am. Chem. Soc. 126, 420.CrossRefGoogle Scholar
  17. 17.
    C. Zaleski, M. Pochaba, E. C. Depperman, J. W. Kampf, M. L. Kirk, and V. L. Pecoraro (2004). Angew. Chem. Int. Ed. 43, 3912.CrossRefGoogle Scholar
  18. 18.
    C. M. Zaleski, E. C. Depperman, J. W. Kampf, M. L. Kirk, and V. L. Pecoraro (2004). Angew. Chem. 116, 4002.CrossRefGoogle Scholar
  19. 19.
    A. Mishra, W. Wernsdorfer, K. A. Abboud, and G. Christou (2004). J. Am. Chem. Soc. 126, 15648.CrossRefGoogle Scholar
  20. 20.
    J.-L. Liu, W.-Q. Lin, Y.-C. Chen, J.-D. Leng, F.-S. Guo, and M.-L. Tong (2012). Inorg. Chem. 52, 457.CrossRefGoogle Scholar
  21. 21.
    H. L. C. Feltham, R. Clérac, L. Ungur, L. F. Chibotaru, A. K. Powell, and S. Brooker (2013). Inorg. Chem. 52, 3236.CrossRefGoogle Scholar
  22. 22.
    M. Andruh, J. P. Costes, C. Diaz, and S. Gao (2009). Inorg. Chem. 48, 3342.CrossRefGoogle Scholar
  23. 23.
    R. Sessoli and A. K. Powell (2009). Coord. Chem. Rev. 253, 2328.CrossRefGoogle Scholar
  24. 24.
    L. Sorace, C. Benelli, and D. Gatteschi (2011). Chem. Soc. Rev. 40, 3092.CrossRefGoogle Scholar
  25. 25.
    H. L. C. Feltham and S. Brooker (2014). Coord. Chem. Rev. 276, 1.CrossRefGoogle Scholar
  26. 26.
    K. Liu, W. Shi, and P. Cheng (2015). Coord. Chem. Rev. 289, 74.CrossRefGoogle Scholar
  27. 27.
    A. Baniodeh, I. J. Hewitt, V. Mereacre, Y. Lan, G. Novitchi, C. E. Anson, and A. K. Powell (2011). Dalton Trans. 40, 4080.CrossRefGoogle Scholar
  28. 28.
    J.-P. Costes, F. Dahan, and A. Dupuis (2000). Inorg. Chem. 39, 5994.CrossRefGoogle Scholar
  29. 29.
    J.-P. Costes, F. Dahan, and A. Dupuis (2000). Inorg. Chem. 39, 165.CrossRefGoogle Scholar
  30. 30.
    V. Baskar, K. Gopal, M. Helliwell, F. Tuna, W. Wernsdorfer, and R. E. P. Winpenny (2010). Dalton Trans. 39, 4747.CrossRefGoogle Scholar
  31. 31.
    A. V. Funes, L. Carrella, E. Rentschler, and P. Alborés (2014). Dalton Trans. 43, 2361.CrossRefGoogle Scholar
  32. 32.
    H. H. Zou, L. B. Sheng, F. P. Liang, Z. L. Chen, and Y. Q. Zhang (2015). Dalton Trans. 44, 18544.CrossRefGoogle Scholar
  33. 33.
    H. Quan, L. Sheng, H. Zou, Z. Liu, D. Liu, B. Li, M. Chen, and F. Liang (2018). J. Clust. Sci. 29, 75.CrossRefGoogle Scholar
  34. 34.
    X. Fu, H. Wang, H. Zou, H. Quan, B. Li, and F. Liang (2017). J Clust Sci. 28, 3229.CrossRefGoogle Scholar
  35. 35.
    C. Papatriantafyllopoulou, W. Wernsdorfer, K. A. Abboud, and G. Christou (2011). Inorg. Chem. 50, 421.CrossRefGoogle Scholar
  36. 36.
    S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, L. F. Chibotaru, K. S. Murray, and B. F. Abrahams (2013). Angew. Chem. Int. Ed. 52, 12014.CrossRefGoogle Scholar
  37. 37.
    I. Oyarzabal, J. Ruiz, J. M. Seco, M. Evangelisti, A. Camón, E. Ruiz, D. Aravena, and E. Colacio (2014). Chem. Eur. J. 20, 14262.CrossRefGoogle Scholar
  38. 38.
    E. M. Pineda, N. F. Chilton, F. Tuna, R. E. P. Winpenny, and E. J. L. McInnes (2015). Inorg. Chem. 54, 5930.CrossRefGoogle Scholar
  39. 39.
    G. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal UniversityGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations