Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 5–10 | Cite as

Spectroscopic Studies of a Novel InorganicOrganic Hybrid Based on Polyoxovanadates Under a Wide Range of Wavelengths

  • Zhifeng Yu
  • Degang Ke
  • Bo Huang
  • Yunting Zhang
  • Zhihao Luo
  • Huan Wang
  • Zicheng XiaoEmail author
  • Pingfan WuEmail author
Original Paper
  • 77 Downloads

Abstract

In this paper, we reported the synthesis of a new polyoxovanadate hybrid with chlorobenzoyl ligand, which was characterized by a series of spectroscopic technologies radiated with the wavelengths from nanoscale to decimetre including X-ray diffraction, Ultraviolet–Visible spectrometer, Fourier Transform Infrared spectrometer, Raman spectrometer and Nuclear Magnetic Resonance. The electrochemical behaviour and thermal stability were also investigated through cyclic voltammetries and thermogravimetric analyses, respectively. The spectroscopic studies in this work could give a cornerstone to explore the polyoxovanadate hybrids on molecular scale.

Keywords

Polyoxovanadates Inorganic–organic hybrid Aromatic ligand Spectroscopy Molecular scale 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 21271068, 21401050), the Natural Science Foundation of Hubei Province (No. 2015CFA131) and Wuhan Applied Basic Research Program (No. 2014010101010020).

Author contributions

Prof. Wu, Prof. Xiao and B. Huang provided the idea of this paper. D. Ke, Z. Yu, Z. Luo and H. Wang are the excellent undergraduate students in our group and they conducted the syntheses and characterizations of FT-IR, UV–Vis, NMR and Raman. Prof. Xiao conducted the single-crystal X-ray diffraction and analyzed the diffractive data with B. Huang and Y. Zhang, and they write the structural discussion section. CV experiment was conducted by D. Ke and TGA experiment was conducted by Z. Yu. The paper was organized by all authors and the final draft was revised by Prof. Wu, Prof. Xiao and B. Huang. In addition, D. Ke and Z. Yu contributed equally to this work and the work was supported by the funding from Prof. Wu and Prof. Xiao.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2018_1453_MOESM1_ESM.docx (359 kb)
Supplementary material 1 (DOCX 358 kb)

References

  1. 1.
    K. Y. Monakhov, W. Bensch, and P. Kogerler (2015). Chem. Soc. Rev. 44, (23), 8443–8483.  https://doi.org/10.1039/c5cs00531k.CrossRefGoogle Scholar
  2. 2.
    T. Yamase and K. Ohtaka (1994). J. Chem. Soc., Dalton Trans. 18, 2599–2608.  https://doi.org/10.1039/DT9940002599.CrossRefGoogle Scholar
  3. 3.
    T. Yamase, L. Yang, and R. Suzuki (1999). J. Mol. Catal. A: Chem. 147, (1), 179–190.  https://doi.org/10.1016/S1381-1169(99)00142-9.CrossRefGoogle Scholar
  4. 4.
    J. Liu, Z. Chen, S. Chen, B. Zhang, J. Wang, H. Wang, B. Tian, M. Chen, X. Fan, Y. Huang, T. C. Sum, J. Lin, and Z. X. Shen (2017). ACS Nano 11, (7), 6911–6920.  https://doi.org/10.1021/acsnano.7b02062.CrossRefGoogle Scholar
  5. 5.
    S. Hartung, N. Bucher, H.-Y. Chen, R. Al-Oweini, S. Sreejith, P. Borah, Z. Yanli, U. Kortz, U. Stimming, H. E. Hoster, and M. Srinivasan (2015). J. Power Sources 288, 270–277.  https://doi.org/10.1016/j.jpowsour.2015.04.009.CrossRefGoogle Scholar
  6. 6.
    E. Kioseoglou, S. Petanidis, C. Gabriel, and A. Salifoglou (2015). Coord. Chem. Rev. 301–302, 87–105.  https://doi.org/10.1016/j.ccr.2015.03.010.CrossRefGoogle Scholar
  7. 7.
    G. G. Nunes, A. C. Bonatto, C. G. de Albuquerque, A. Barison, R. R. Ribeiro, D. F. Back, A. V. C. Andrade, E. L. de Sá, F. D. O. Pedrosa, J. F. Soares, and E. M. de Souza (2012). J. Inorg. Biochem. 108, 36–46.  https://doi.org/10.1016/j.jinorgbio.2011.11.019.CrossRefGoogle Scholar
  8. 8.
    O. Linnenberg, M. Moors, A. Solé-Daura, X. López, C. Bäumer, E. Kentzinger, W. Pyckhout-Hintzen, and K. Y. Monakhov (2017). J. Phys. Chem. C 121, (19), 10419–10429.  https://doi.org/10.1021/acs.jpcc.7b02138.CrossRefGoogle Scholar
  9. 9.
    X. Yao, Z. Shuai, H. WenTao, and X. Yan (2016). ChemistrySelect 1, (19), 6250–6256.  https://doi.org/10.1002/slct.201601671.CrossRefGoogle Scholar
  10. 10.
    J.-K. Li, J. Dong, C.-P. Wei, S. Yang, Y.-N. Chi, Y.-Q. Xu, and C.-W. Hu (2017). Inorg. Chem. 56, (10), 5748–5756.  https://doi.org/10.1021/acs.inorgchem.7b00366.CrossRefGoogle Scholar
  11. 11.
    H.-M. Zhang, J. Yang, W.-Q. Kan, Y.-Y. Liu, and J.-F. Ma (2016). Cryst. Growth Des. 16, (1), 265–276.  https://doi.org/10.1021/acs.cgd.5b01226.CrossRefGoogle Scholar
  12. 12.
    H. Jia, Q. Li, A. Bayaguud, S. She, Y. Huang, K. Chen, and Y. Wei (2017). Sci. Rep. 7, (1), 12523.  https://doi.org/10.1038/s41598-017-12633-8.CrossRefGoogle Scholar
  13. 13.
    H. Jia, Q. Li, A. Bayaguud, Y. Huang, S. She, K. Chen, and Y. Wei (2018). Dalton Trans. 47, (2), 577–584.  https://doi.org/10.1039/c7dt03822d.CrossRefGoogle Scholar
  14. 14.
    M. Lechner, K. Kastner, C. J. Chan, R. Guttel, and C. Streb (2018). Chem. Eur. J. 24, (19), 4952–4956.  https://doi.org/10.1002/chem.201706046.CrossRefGoogle Scholar
  15. 15.
    H. Wang, J. Isobe, D. Matsumura, and H. Yoshikawa (2018). J. Solid State Electrochem. 22, (7), 2067–2071.  https://doi.org/10.1007/s10008-018-3920-4.CrossRefGoogle Scholar
  16. 16.
    B. Huang, M. Cheng, J. Cai, B. Wu, W. Xiong, X. Hu, Z. Xiao, and P. Wu (2017). J. Chem. Crystallogr. 47, (3–4), 95–100.  https://doi.org/10.1007/s10870-017-0684-0.CrossRefGoogle Scholar
  17. 17.
    B. Huang, N. Wang, K. Yang, D. Ke, Y. Fang, X. Hu, B. Wu, Z. Xiao, P. Wu, and Y. Wei (2018). New J. Chem. 42, (8), 5853–5858.  https://doi.org/10.1039/c7nj04727d.CrossRefGoogle Scholar
  18. 18.
    P. G. Reddy, G. Angajala, N. Matharoo, and C. P. Pradeep (2017). ChemistrySelect 2, (34), 11235–11239.  https://doi.org/10.1002/slct.201702117.CrossRefGoogle Scholar
  19. 19.
    O. Linnenberg, A. Kondinski, C. Stocker, and K. Y. Monakhov (2017). Dalton Trans. 46, (45), 15636–15640.  https://doi.org/10.1039/C7DT03376A.CrossRefGoogle Scholar
  20. 20.
    K. P. Sullivan, W. A. Neiwert, H. Zeng, A. K. Mehta, Q. Yin, D. A. Hillesheim, S. Vivek, P. Yin, D. L. Collins-Wildman, E. R. Weeks, T. Liu, and C. L. Hill (2017). Chem. Commun. 53, (83), 11480–11483.  https://doi.org/10.1039/c7cc05657e.CrossRefGoogle Scholar
  21. 21.
    D. Li, J. Song, P. Yin, S. Simotwo, A. J. Bassler, Y. Aung, J. E. Roberts, K. I. Hardcastle, C. L. Hill, and T. Liu (2011). J. Am. Chem. Soc. 133, (35), 14010–14016.  https://doi.org/10.1021/ja204034g.CrossRefGoogle Scholar
  22. 22.
    M. P. Santoni, A. K. Pal, G. S. Hanan, M. C. Tang, K. Venne, A. Furtos, P. Menard-Tremblay, C. Malveau, and B. Hasenknopf (2012). Chem. Commun. 48, (2), 200–202.  https://doi.org/10.1039/c1cc16155e.CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, X. Wang, S. Li, B. Song, K. Shao, and Z. Su (2016). Inorg. Chem. 55, (17), 8770–8775.  https://doi.org/10.1021/acs.inorgchem.6b01338.CrossRefGoogle Scholar
  24. 24.
    D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, and J.-M. Laîné (2000). Water Res. 34, (11), 2927–2940.  https://doi.org/10.1016/S0043-1354(00)00022-1.CrossRefGoogle Scholar
  25. 25.
    X. Xu, N. Bosnjakovic-Pavlovic, M. B. Colovic, D. Z. Krstic, V. M. Vasic, J. M. Gillet, P. Wu, Y. Wei, and A. Spasojevic-de Bire (2016). J. Inorg. Biochem. 161, 27–36.  https://doi.org/10.1016/j.jinorgbio.2016.04.029.CrossRefGoogle Scholar
  26. 26.
    X. Xu, A. Spasojevic-de Bire, N. E. Ghermani, Y. Wei, S. Novakovic, N. Bosnjakovic-Pavlovic, and P. Wu (2017). Phys. Chem. Chem. Phys. 19, (28), 18162–18166.  https://doi.org/10.1039/C7CP01840A.CrossRefGoogle Scholar
  27. 27.
    P. Yin, P. Wu, Z. Xiao, D. Li, E. Bitterlich, J. Zhang, P. Cheng, D. V. Vezenov, T. Liu, and Y. Wei (2011). Angew. Chem. Int. Ed. Engl. 50, (11), 2521–2525.  https://doi.org/10.1002/anie.201006144.CrossRefGoogle Scholar
  28. 28.
    B. Huang, X. Hu, X. Hu, N. Wang, K. Yang, Z. Xiao, and P. Wu (2017). J. Mol. Struct. 1149, 42–47.  https://doi.org/10.1016/j.molstruc.2017.07.088.CrossRefGoogle Scholar
  29. 29.
    A. Sakakura, K. Kawajiri, T. Ohkubo, Y. Kosugi, and K. Ishihara (2007). J. Am. Chem. Soc. 129, (47), 14775–14779.  https://doi.org/10.1021/ja075824w.CrossRefGoogle Scholar
  30. 30.
    B. Huang, Z. Xiao, B. Wu, X. Hu, X. Hu, P. Wu, and Y. Wei (2017). Inorg. Chem. Front. 4, (1), 165–170.  https://doi.org/10.1039/c6qi00302h.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhifeng Yu
    • 1
  • Degang Ke
    • 1
  • Bo Huang
    • 1
  • Yunting Zhang
    • 1
  • Zhihao Luo
    • 1
  • Huan Wang
    • 1
  • Zicheng Xiao
    • 1
    Email author
  • Pingfan Wu
    • 1
    Email author
  1. 1.Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of TechnologyWuhanChina

Personalised recommendations