Advertisement

Structural and Magnetic Properties of Nickel Nanoparticles Prepared by Arc Discharge Method Using an Ultrasonic Nebulizer

  • Ahmed M. El-Khatib
  • Mohamed S. Badawi
  • Gamal D. Roston
  • Ramy M. Moussa
  • Moustafa M. Mohamed
Original Paper

Abstract

Synthesis of nanoparticles with unique properties has attracted a lot of interest of scientists and researchers these days. A key aspect of being able to manipulate the properties of the nanomaterials is the nanoscale architecture and engineering by various processing techniques. A synthetic strategy was developed to control the preparation of nickel nanoparticles Ni-NPs produced using an arc discharge technique with an ultrasonic nebulizer. The sample was characterized for its structural and magnetic properties using X-ray diffraction, ultraviolet–visible (UV–Vis) spectrophotometer, zeta potential, high resolution transmission electron microscope, scanning electron microscope, vibrating sample magnetometer. The resulted sample unveiled small, spherical and homogeneous Ni nanoparticles with an average size 15 nm lower than the critical size which indicates a superparamagnetic behavior. The zeta potential measurements shows + 49.01 ± 3.2 mV which confirms the synthesis of stable Ni nanoparticles. A UV–Vis spectrum of the nanosized Ni sample shows a sharp absorption peak between 362 and 380 nm. The magnetic properties shows no hysteresis and zero results for coercivity force and remanence that indicates superparamagnetic behavior of the Ni nanoparticles.

Keywords

Nickel nanoparticles Ultrasonic nebulizer Arc discharge Structural properties Magnetic properties 

Notes

Acknowledgements

The authors wish to thank the physics department, Faculty of Science, Alexandria University for providing instrumental and laboratory facilities to carry out this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    N. T. K. Thanh (ed.) Magnetic Nanoparticles: From Fabrication to Clinical Applications (CRC Press, Boca Raton, 2012).Google Scholar
  2. 2.
    R. Serrano García, S. Shelley, and Y. K. Gun’ko (2018). Appl. Sci. 8, (2), 172.CrossRefGoogle Scholar
  3. 3.
    T. Hyeon (2003). Chem. Commun. 8, 927–934.CrossRefGoogle Scholar
  4. 4.
    B. Xia, I. W. Lenggoro, and K. Okuyama (2001). J. Mater. Sci. 36, (7), 1701–1705.CrossRefGoogle Scholar
  5. 5.
    A. D. Omrani, M. A. Bousnina, L. S. Smiri, M. Taibi, P. Leone, F. Schoenstein, and N. Jouini (2010). Mater. Chem. Phys. 123, (2–3), 821–828.CrossRefGoogle Scholar
  6. 6.
    N. R. Nik Roselina and A. Azizan (2012). Procedia Eng. 41, 1620–1626.CrossRefGoogle Scholar
  7. 7.
    R. Rudolf, B. Friedrich, S. Stopic, I. Anzel, S. Tomic, and M. Colic (2012). J. Biomater. Appl. 26, (5), 595–612.CrossRefGoogle Scholar
  8. 8.
    M. Hemalatha, N. Suriyanarayanan, and S. Prabahar (2014). Opt. Int. J. Light Electron Opt. 125, (8), 1962–1966.CrossRefGoogle Scholar
  9. 9.
    M. R. Vaezi, M. Barzgar Vishlaghi, M. Farzalipour Tabriz, and O. Mohammad Moradi (2015). J. Alloys Compd. 635, 118–123.CrossRefGoogle Scholar
  10. 10.
    M. D. Stopić (2015). Vojnotehnički glasnik 63, (4), 215–223.Google Scholar
  11. 11.
    N. R. Haghighi and R. Poursalehi (2015). Procedia Mater. Sci. 11, 347–351.CrossRefGoogle Scholar
  12. 12.
    A. M. El-Khatib, M. S. Badawi, G. D. Roston, A. M. Khalil, R. M. Moussa, and M. M. Mohamed (2018). J. Nano Res. 52, 88–101.CrossRefGoogle Scholar
  13. 13.
    J. Singh, T. Patel, N. Kaurav, and G. S. Okram (2016). AIP Conf. Proc. 1731, (1), 050036.CrossRefGoogle Scholar
  14. 14.
    A. M. El-Khatib, M. S. Badawi, Z. F. Ghatass, M. M. Mohamed, and M. Elkhatib (2018). J. Clust. Sci.  https://doi.org/10.1007/s10876-018-1430-2.CrossRefGoogle Scholar
  15. 15.
    J. H. Bang and K. S. Suslick (2010). Adv. Mater. 22, (10), 1039–1059.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    E. Hontañón, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl, and F. E. Kruis (2013). J. Nanopart. Res. 15, (9), 1957.CrossRefGoogle Scholar
  17. 17.
    P. Ahuja, S. K. Ujjain, R. K. Sharma, and G. Singh (2014). RSC Adv. 4, (100), 57192–57199.CrossRefGoogle Scholar
  18. 18.
    R. Sharma, D. P. Bisen, U. Shukla, and B. G. Sharma (2012). Recent Res. Sci. Technol. 4, (8), 77–79.Google Scholar
  19. 19.
    B. Ingham (2015). Crystallogr. Rev. 21, (4), 229–303.CrossRefGoogle Scholar
  20. 20.
    M. M. Mohamed, Z. F. Ghatass, E. A. Shalaby, M. M. Kotb, and M. El-Raey (2000). Fresenius’ J. Anal. Chem. 368, (8), 809–815.CrossRefGoogle Scholar
  21. 21.
    J. Kang, Y. Kim, H. Kim, X. Hu, N. Saito, J.-H. Choi, and M.-H. Lee (2016). Sci. Rep.  https://doi.org/10.1038/srep38652.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    H. T. Rahal, R. Awad, A. M. Abdel-Gaber, and D. Bakeer (2017). J. Nanomater.  https://doi.org/10.1155/2017/7460323.CrossRefGoogle Scholar
  23. 23.
    M. Kaszuba, J. Corbett, F. M. Watson, and A. Jones (2010). Philos. Trans. A. Math. Phys. Eng. Sci. 368, (1927), 4439–4451.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    J. D. Clogston and A. K. Patri (2011). Methods Mol. Biol. 697, 63–70.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    C. J. Pandian, R. Palanivel, and S. Dhananasekaran (2015). Chin. J. Chem. Eng. 23, (8), 1307–1315.CrossRefGoogle Scholar
  26. 26.
    G. Cheng, D. Romero, G. T. Fraser, and A. R. Hight Walker (2005). Langmuir 21, (26), 12055–12059.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Y.-Y. Xu, L. Wang, T. Wu, and R.-M. Wang (2017). Rare Met.  https://doi.org/10.1007/s12598-017-0938-1.CrossRefGoogle Scholar
  28. 28.
    M. R. Sanaee, S. Chaitoglou, N. Aguiló-Aguayo, and E. Bertran (2016). Appl. Sci. 7, (1), 26.CrossRefGoogle Scholar
  29. 29.
    N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, and B. Chaudret (2001). Nano Lett. 1, (10), 565–568.CrossRefGoogle Scholar
  30. 30.
    X. He, W. Zhong, C.-T. Au, and Y. Du (2013). Nanoscale Res. Lett. 8, (1), 446.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    M. Khairy (2013). Int. J. Mater. Chem. 3, (5), 106–111.Google Scholar
  32. 32.
    A. Chiolerio and P. Allia Magnetic nanostructures and spintronics. in B. Bhushan (ed.), Encyclopedia of Nanotechnology (Springer, Dordrecht, 2012), pp. 1248–1256.Google Scholar
  33. 33.
    D. L. Leslie-Pelecky and R. D. Rieke (1996). Chem. Mater. 8, (8), 1770–1783.CrossRefGoogle Scholar
  34. 34.
    D. A. Dimitrov and G. M. Wysin (1996). Phys. Rev. B 54, (13), 9237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed M. El-Khatib
    • 1
  • Mohamed S. Badawi
    • 1
    • 2
  • Gamal D. Roston
    • 1
  • Ramy M. Moussa
    • 3
  • Moustafa M. Mohamed
    • 4
  1. 1.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Physics, Faculty of ScienceBeirut Arab UniversityBeirutLebanon
  3. 3.Basic Engineering Sciences Department, Faculty of EngineeringPharos University in AlexandriaAlexandriaEgypt
  4. 4.Biophysics Department, Medical Research InstituteAlexandria UniversityAlexandriaEgypt

Personalised recommendations