Journal of Cluster Science

, Volume 29, Issue 6, pp 1329–1336 | Cite as

Preparation, Characterization and Antibacterial Activity Investigation of Hydrocolloids Based Irish Moss/ZnO/CuO Bio-based Nanocomposite Films

  • Atefeh Alipour
  • Shahrzad JavanshirEmail author
  • Reza Peymanfar
Original Paper


Natural hydrocolloids Irish moss (IM) based ternary bio-based nanocomposite films (BBNCFs), reinforced with ZnO nanorods and foliated CuO were prepared through co-precipitation method. The morphologies and structures of the nanocomposite were characterized by Fourier Transform Infrared Spectroscopy analysis, Scanning Electron Microscopy, Energy-Dispersive X-Ray Spectroscopy and X-Ray Diffraction. Their antibacterial activities were studied using Gram-negative Escherichia coli (E. coli, PTCC 1330) by the plate count method. The nanocomposite films exhibited characteristic antibacterial activity. The synergistic outcome of combined use of more than one antibacterial agent is reflected by enhanced antibacterial activity of the nanocomposite. These IM/ZnO/CuO films could be used as effective bactericidal agents for various industries, particularly the food industry.


Bio-based nanocomposite films Hydrocolloids Antibacterial activity Zinc oxide Copper oxide 


  1. 1.
    G. Benelli (2016). Enzyme Microb. Technol. 95, 58–68.CrossRefGoogle Scholar
  2. 2.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1–2.CrossRefGoogle Scholar
  3. 3.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3–10.CrossRefGoogle Scholar
  4. 4.
    F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Winship, and H. J. Reid (2014). J. Antimicrob. Chemoth. 54, 1019–1024.CrossRefGoogle Scholar
  5. 5.
    J. W. Rhim and L. F. Wang (2014). Appl. Clay. Sci. 97, 174–181.CrossRefGoogle Scholar
  6. 6.
    I. Armentano, N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M. A. Lopez-Manchado, and J. M. Kenny (2013). Prog. Polym. Sci. 38, 1720–1747.CrossRefGoogle Scholar
  7. 7.
    Z. Shariatinia and M. Fazli (2015). Food Hydrocoll. 46, 112–124.CrossRefGoogle Scholar
  8. 8.
    H. Hezaveh and I. I. Muhamad (2012). The effect of nanoparticles on gastrointestinal release from modified κ-carrageenan nanocomposite hydrogels. Carbohydr. Polym. 89, 138–145.CrossRefGoogle Scholar
  9. 9.
    L. R. Rane, N. R. Savadekar, P. G. Kadam, and S. T. Mhaske (2014). J. Mater. 2014, 1–8.CrossRefGoogle Scholar
  10. 10.
    B. Hemmati, S. Javanshir, and Z. Dolatkhah (2016). RSC Adv. 6, 50431–50436.CrossRefGoogle Scholar
  11. 11.
    J. Necas and L. Bartosikova (2013). Vet. Med. 58, 187–205.CrossRefGoogle Scholar
  12. 12.
    V. D. Prajapati, P. M. Maheriya, G. K. Jani, and H. K. Solanki (2014). Carbohydr. Polym. 105, 97–112.CrossRefGoogle Scholar
  13. 13.
    A. Pendashteh, M. S. Rahmanifar, and M. F. Mousavi (2014). Ultrason. sonochem. 21, 643–652.CrossRefGoogle Scholar
  14. 14.
    G. L. Jones, C. Muller, M. O’reilly, and D. Stickler (2005). J. Antimicrob. Chemother. 57, 266–272.CrossRefGoogle Scholar
  15. 15.
    O. Clarkin, A. Wren, R. Thornton, J. Cooney, and M. Towler (2011). J. Biomater. Appl. 26, 277–292.CrossRefGoogle Scholar
  16. 16.
    Á. Györgyey, L. Janovák, A. Ádám, J. Kopniczky, K. L. Tóth, Á. Deák, I. Panayotov, F. Cuisinier, I. Dékány, and K. Turzó (2016). J. Biomater. Appl. 31, 55–67.CrossRefGoogle Scholar
  17. 17.
    A. Wren, B. Akgun, B. Adams, A. Coughlan, N. Mellott, and M. Towler (2012). J. Biomater. Appl. 27, 433–443.CrossRefGoogle Scholar
  18. 18.
    M. Sahooli, S. Sabbaghi, and R. Saboori (2012). Mater. Lett. 81, 169–172.CrossRefGoogle Scholar
  19. 19.
    S. Jaiswal, P. McHale, and B. Duffy (2012). Colloids Surf. B Biointerfaces 94, 170–176.CrossRefGoogle Scholar
  20. 20.
    A. Al-Jumaili, S. Alancherry, K. Bazaka, and M. V. Jacob (2017). Materials 10, 1066.CrossRefGoogle Scholar
  21. 21.
    H. Shokry Hassan, M. F. Elkady, E. E. Hafez, and E. Salama (2017). Nanosci. Nanotechnol. Asia. 7, 62–72.Google Scholar
  22. 22.
    M. Looney, H. O. Shea, L. Gunn, D. Crowley, and D. Boyd (2013). J. Biomater. Appl. 27, 937–947.CrossRefGoogle Scholar
  23. 23.
    G. Ren, D. Hu, E. W. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker (2009). Int. J. Antimicrob. Agents. 33, 587–590.CrossRefGoogle Scholar
  24. 24.
    S. Shankar, X. Teng, and J. W. Rhim (2014). Carbohydr. Polym. 114, 484–492.CrossRefGoogle Scholar
  25. 25.
    P. Kanmani and J. W. Rhim (2014). Carbohydr. Polym. 106, 190–199.CrossRefGoogle Scholar
  26. 26.
    G. Xiong, U. Pal, J. Serrano, K. Ucer, and R. Williams (2006). Phys. Status Solidi (c) 3, 3577–3581.CrossRefGoogle Scholar
  27. 27.
    K. Giannousi, E. Hatzivassiliou, S. Mourdikoudis, G. Vourlias, A. Pantazaki, and C. Dendrinou-Samara (2016). J. Inorg. Biochem. 164, 82–90.CrossRefGoogle Scholar
  28. 28.
    S. Jadhav, S. Gaikwad, M. Nimse, and A. Rajbhoj (2011). J. Clust. Sci. 22, 121–129.CrossRefGoogle Scholar
  29. 29.
    M. Guo, P. Diao, and S. Cai (2005). Appl. Surf. Sci. 249, 71–75.CrossRefGoogle Scholar
  30. 30.
    A. Stanković, S. Dimitrijević, and D. Uskoković (2013). Coll. Surf. B Biointerfaces 102, 21–28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Heterocyclic Chemistry Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehranIran

Personalised recommendations