Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1285–1290 | Cite as

A Low Cytotoxic Metal–Organic Framework Carrier: pH-Responsive 5-Fluorouracil Delivery and Anti-Cervical Cancer Activity Evaluation

  • Zi-Chao Wang
  • Ying Zhang
  • Zhong-Yan Li
Original Paper
  • 105 Downloads

Abstract

A new porous metal–organic framework (MOF) [Zn2(ad)2(fmdb)(H2O)](DMF)3 (1, DMF = N,N-dimethylformamide) based on zinc(II) ions, biomolecular adenine (Had) and 4,4′-(fluoromethylene)dibenzoic acid (H2fmdb) has been successfully obtained via a one-pot solvothermal reaction. The structural analysis via the single crystal X-ray diffraction reveals that compound 1 locates in the monoclinic space group C2/c and demonstrates a three-dimensional channel-type neutral framework. The as-prepared complex 1 exhibits low toxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, revealing its potential application in human health care. In light of its nano-sized channel space and good stability in biological buffers solution, the activated compound 1 (1a) has been applied as a carrier for loading the anticancer drug 5-Fu (5-Fluorouracil) though a simple adsorption process. The successful loading of 5-Fu was confirmed by the gas sorption measurement and the loading capacity was determined by UV–Vis spectroscopy, which reveals a drug loading capacity of 44.6 wt%. The drug delivery in the simulated cancerous tissues (pH = 5.0) exhibited a more complete release in comparison with that in the normal tissues (pH = 7.4), demonstrating the compound 1a could be potentially used as a pH-controlled drug delivery carrier. In connection to these, in vitro anticancer activity of 5-Fu loaded 1a was also evaluated using MTT assays against two human cervical cancer cells HeLa and SiHa.

Keywords

Biocompatible MOF Mixed-ligand 5-Fu carrier pH-controlled release Anticancer activity 

Supplementary material

10876_2018_1446_MOESM1_ESM.docx (854 kb)
Supplementary material 1 (DOCX 854 kb)

References

  1. 1.
    G. Chang, B. Li, H. Wang, T. Hu, Z. Bao, and B. Chen (2016). Chem. Commun. 52, 3494.CrossRefGoogle Scholar
  2. 2.
    W. Y. Gao, T. Pham, K. A. Forrest, B. Space, L. Wojtas, Y. S. Chen, and S. Ma (2015). Chem. Commun. 51, 9636.CrossRefGoogle Scholar
  3. 3.
    D. M. Chen, N. N. Zhang, J. Y. Tian, C. S. Liu, and M. Du (2017). Inorg. Chem. 56, 7328.CrossRefPubMedGoogle Scholar
  4. 4.
    J. N. Hao and B. Yan (2016). Nanoscale 8, 12047.CrossRefPubMedGoogle Scholar
  5. 5.
    B. Lei, M. Wang, Z. Jiang, W. Qi, R. Su, and Z. He (2018). ACS Appl. Mater. Interfaces 10, 16698.CrossRefPubMedGoogle Scholar
  6. 6.
    L. Wang, M. Zheng, and Z. Xie (2018). J. Mater. Chem. B 6, 707.CrossRefGoogle Scholar
  7. 7.
    K. Jiang, L. Zhang, Q. Hu, Y. Yang, W. Lin, Y. Cui, Y. Yang, and G. Qian (2018). Mater. Lett. 225, 142.CrossRefGoogle Scholar
  8. 8.
    D. Chen, X. Zhang, W. Shi, and P. Cheng (2014). Cryst. Growth Des. 14, 6261.CrossRefGoogle Scholar
  9. 9.
    G. N. Lucena, R. C. Alves, M. P. Abuçafy, L. A. Chiavacci, I. C. da Silva, F. R. Pavan, and R. C. G. Frem (2018). J. Solid State Chem. 260, 67.CrossRefGoogle Scholar
  10. 10.
    X. Du, R. Fan, L. Qiang, K. Xing, H. Ye, X. Ran, Y. Song, P. Wang, and Y. Yang (2017). ACS Appl. Mater. Interfaces 9, 28939.CrossRefPubMedGoogle Scholar
  11. 11.
    W. Lin, Q. Hu, J. Yu, K. Jiang, Y. Yang, S. Xiang, Y. Cui, Y. Yang, Z. Wang, and G. Qian (2016). Chempluschem 81, 804.CrossRefGoogle Scholar
  12. 12.
    Q. Hu, J. Yu, M. Liu, A. Liu, Z. Dou, and Y. Yang (2014). J. Med. Chem. 57, 5679.CrossRefPubMedGoogle Scholar
  13. 13.
    F. Shu, D. Lv, X. L. Song, B. Huang, C. Wang, Y. Yu, and S. C. Zhao (2018). RSC Adv. 8, 6581.CrossRefGoogle Scholar
  14. 14.
    F. Li, B. Li, C. Wang, Y. Zeng, J. Liu, C. Y. Gu, P. Lu, and L. Mei (2016). RSC Adv. 6, 47959.CrossRefGoogle Scholar
  15. 15.
    E. A. Giles-Mazón, I. Germán-Ramos, F. Romero-Romero, E. Reinheimer, R. A. Toscano, N. Lopez, C. E. Barrera-Díaz, V. Varela-Guerrero, and M. F. Ballesteros-Rivas (2018). Inorganica Chim. Acta 469, 306.CrossRefGoogle Scholar
  16. 16.
    C. Wang, L. Tian, W. Zhu, S. Wang, P. Wang, Y. Liang, W. Zhang, H. Zhao, and G. Li (2017). ACS Appl. Mater. Interfaces 9, 20076.CrossRefPubMedGoogle Scholar
  17. 17.
    J. An, O. K. Farha, J. T. Hupp, E. Pohl, J. I. Yeh, and N. L. Rosi (2012). Nat. Commun. 3, 604.CrossRefPubMedGoogle Scholar
  18. 18.
    T. Li, D. L. Chen, J. E. Sullivan, M. T. Kozlowski, J. K. Johnson, and N. L. Rosi (2013). Chem. Sci. 4, 1746.CrossRefGoogle Scholar
  19. 19.
    J. Li, X. H. Ji, and J. T. Li (2017). J. Mol. Struct. 1147, 22.CrossRefGoogle Scholar
  20. 20.
    J. Li and J. T. Li (2018). Inorg. Chem. Comm. 89, 51.CrossRefGoogle Scholar
  21. 21.
    J. T. Li, J. Li, L. M. Song, and X. H. Ji (2017). Inorg. Chem. Commun. 83, 88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GynaecologyWeifang People’s HospitalWeifangChina
  2. 2.Department of Thoracic Surgery NursingChangle People’s HospitalWeifangChina
  3. 3.Drug Dispensing RoomWeifang People’s HospitalWeifangChina

Personalised recommendations