Journal of Cluster Science

, Volume 29, Issue 6, pp 1243–1253 | Cite as

Pharmacological and Larvicidal Potential of Green Synthesized Silver Nanoparticles Using Carmona retusa (Vahl) Masam Leaf Extract

  • Ramanathan Rajkumar
  • Muthugounder Subramanian Shivakumar
  • Sengottayan Senthil Nathan
  • Kuppusamy SelvamEmail author
Original Paper


Mosquito control is facing a challenge worldwide, due to ineffectiveness of chemical insecticides. Identification of novel and ecofriendly insecticides is the need of the hour. In the present study mosquito control efficacy, antioxidants and anti-cancerous potential of silver nanoparticle conjugated with Carmona retusa (Vahl) Masam nanoparticles. Synthesized nanoparticles had UV absorption maximum at 420 nm, size ranging between 20 and 40 nm based of TEM, has cubic structure, C–H bending and Ag Metal bands. Results show high free radical scavenging ability of C. retusa derived silver nanoparticles as evidenced by DPPH radical and H2O2 radical assay. C. retusa derived nanoparticles produce 80% inhibition in MCF-7 cell line at concentration of 500 μg/ml. High larvicidal activity with LC50 values of 116.681 ppm for Anopheles stephensi, 198.766 ppm for Aedes aegypti, and 83.553 ppm for Culex quinquefasciatus were observed. Based on the findings of the study we suggest that C. retusa plant mediated AgNPs has anticancerous and mosquito larvicidal property and could be bioprospected for drug development and mosquito control.


Green synthesis Nanoparticles Antioxidant Anticancer activity Mosquito control 



This research was funded by University Grants Commission-Rajiv Gandhi National Fellowship Programme (Sanction Number: F1-17.1/2016-17/RGNF-2015-17-SC-TAM-26510) for their financial support. The authors thank Department of Botany, School of life Sciences, Periyar University, Salem, Tamil Nadu, India, for infrastructural support and KIRND Institute of Research and Development Pvt Ltd, Tiruchirappalli, Tamil Nadu, India.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    S. Kaviya, J. Santhanalakshmi, and B. Viswanathan (2011). J. Nanotechnol. 5, 1.CrossRefGoogle Scholar
  2. 2.
    S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496.CrossRefPubMedGoogle Scholar
  3. 3.
    J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen (2007). Nanotechnology 18, 105104.CrossRefGoogle Scholar
  4. 4.
    C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P. K. Tam, J.-F. Chiu, and C.-M. Che (2007). J. Biol. Inorg. Chem. 12, 527.CrossRefPubMedGoogle Scholar
  5. 5.
    M. A. Albrecht, C. W. Evan, and C. L. Raston (2006). Green Chem. 8, 417.CrossRefGoogle Scholar
  6. 6.
    P. Vivekanandhan, S. Deepa, E. J. Kweka, and M. S. Shivakumar (2018). J. Clust. Sci. Scholar
  7. 7.
    S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic (2002). Nature 420, 800.CrossRefPubMedGoogle Scholar
  8. 8.
    V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83.CrossRefPubMedGoogle Scholar
  9. 9.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1.CrossRefGoogle Scholar
  10. 10.
    M. Gorbe, R. Bhat, E. Aznar, F. Sancenon, M. D. Marcos, F. J. Herraiz, J. Prohens, A. Venkataraman, and R. Martinez-Manez (2016). Materials 9, 325.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    L. S. De Padua, G. C. Lugod, and J. V. Pancho (1980). UPLB Philippines 1, 21.Google Scholar
  12. 12.
    WHO (2016). Zika virus. Fact sheet N°1. Updated January 2016.Google Scholar
  13. 13.
    G. Benelli and J. Beier (2017). Acta Trop. 174, 91.CrossRefPubMedGoogle Scholar
  14. 14.
    G. Benelli and D. Romano (2017). Entomol. Gen. 36, 309. Scholar
  15. 15.
    World Health Organization. (2017). Geniva. Accessed on 22/02/2018.
  16. 16.
    G. Benelli and M. F. Duggan (2018). Acta. Trop. 182, 80.CrossRefPubMedGoogle Scholar
  17. 17.
    WHO. (1999). Geneva: World Health Organization.
  18. 18.
    G. Benelli and H. Mehlhorn (2016). Parasitol. Res. 115, 1747.CrossRefPubMedGoogle Scholar
  19. 19.
    L. Bernhard, P. Bernhard, and P. Magnussen (2003). Physiotherapy. 89, 743.CrossRefGoogle Scholar
  20. 20.
    World Health Organization. (2002). Geneva.
  21. 21.
    World Health Organization. (2016). Geneva. edn 2.
  22. 22.
    I. Mahmood, S. R. Imadi, K. Shazadi, A. Gul, K. R. Hakeem, K. Hakeem, M. Akhtar, and S. Abdullah (2016). Cham 1, 253.Google Scholar
  23. 23.
    N. Macagnan, C. F. Rutkoski, C. Kolcenti, G. V. Vanzetto, L. P. Macagnan, P. F. Sturza, P. A. Hartmann, and M. T. Hartmann (2017). Environ. Sci. Pollut. Res. 24, 20699.CrossRefGoogle Scholar
  24. 24.
    G. Benelli (2015). Parasitol. Res. 114, 2801.CrossRefPubMedGoogle Scholar
  25. 25.
    P. Vivekanandhan, R. Venkatesan, G. Ramkumar, S. Karthi, S. Senthil-Nathan, and M. S. Shivakumar (2018). Int. J. Environ. Res. Pub. Health 15, 388. Scholar
  26. 26.
    G. Benelli (2016). Enzyme Microb. Technol. 95, 58.CrossRefPubMedGoogle Scholar
  27. 27.
    P. Sowndarya, G. Ramkumar, and M. S. Shivakumar (2017). Artif. Cells Nanomed. Biotechnol. 45, 1490.CrossRefPubMedGoogle Scholar
  28. 28.
    M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76.CrossRefPubMedGoogle Scholar
  29. 29.
    P. Molyneux (2004). J. Sci. Technol. 26, 211.Google Scholar
  30. 30.
    B. Halliwell, J. M. Gutteridge, and O. I. Aruoma (1987). Anal. Biochem. 165, 215.CrossRefPubMedGoogle Scholar
  31. 31.
    T. Mosmann (1983). J. Immunol. Methods 65, 55.CrossRefPubMedGoogle Scholar
  32. 32.
    World Health Organization. (2005). Geneva. www.WHO/CDS/WHOPES/GCDPP/13.
  33. 33.
    W. S. Abbott (1925). J. Ecol. Entomol. 18, 265.CrossRefGoogle Scholar
  34. 34.
    B. Kumar, K. Smita, L. Cumbal, and Y. Angulo (2015). J. Mol. Liq. 211, 476.CrossRefGoogle Scholar
  35. 35.
    R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, and K. S. Kaveri Kannan (2012). Process Biochem. 47, 2405.CrossRefGoogle Scholar
  36. 36.
    S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). Environ. Sci. Pollut. Res. 24, 17347.CrossRefGoogle Scholar
  37. 37.
    N. J. Reddy, D. N. Vali, M. Rani, and S. S. Rani (2014). Mater. Sci. Eng. C 34, 115.CrossRefGoogle Scholar
  38. 38.
    P. C. Nagajyothi, S. J. Cha, I. J. Yang, T. V. Sreekanth, K. J. Kim, and H. M. Shin (2015). J. Photochem. Photobiol. B 146, 10.CrossRefPubMedGoogle Scholar
  39. 39.
    R. L. Baldwin (1968). A Rev. J. Dairy Sci. 51, 104.CrossRefGoogle Scholar
  40. 40.
    C. S. Ryu, C. H. Kim, S. Y. Lee, K. S. Lee, K. J. Choung, G. Y. Song, B. H. Kim, S. Y. Ryu, H. S. Lee, and S. K. Kim (2012). Food Chem. 132, 333.CrossRefPubMedGoogle Scholar
  41. 41.
    G. Kiran, M. Sarangapani, T. Gouthami, and A. R. Narsimha Reddy (2013). Toxicol. Environ. Chem. 95, 367.CrossRefGoogle Scholar
  42. 42.
    G. C. Yen and H. Y. Chen (1995). J. Agric. Food Chem. 43, 27.CrossRefGoogle Scholar
  43. 43.
    K. Gopinath, M. Chinnadurai, N. P. Devi, K. Bhakyaraj, S. Kumaraguru, T. Baranisri, A. Sudha, M. Zeeshan, A. Arumugam, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, and G. Benelli (2017). J. Clust. Sci. 28, 621.CrossRefGoogle Scholar
  44. 44.
    G. Benelli (2018). Environ. Sci. Pollut. Res. Int. 25, 12329–12341. Scholar
  45. 45.
  46. 46.
    C. G. Athanassiou, N. G. Kavallieraros, G. Benelli, D. Losic, P. Usha Rani, and N. Desneux (2018). J. Pest Sci. 91, 1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ramanathan Rajkumar
    • 1
  • Muthugounder Subramanian Shivakumar
    • 2
  • Sengottayan Senthil Nathan
    • 3
  • Kuppusamy Selvam
    • 1
    Email author
  1. 1.Department of BotanyPeriyar UniversitySalemIndia
  2. 2.Department of BiotechnologyPeriyar UniversitySalemIndia
  3. 3.Sri Paramakalyani Centre for Excellence and Environmental SciencesManonmaniam Sundaranar UniversityAlwarkurichiIndia

Personalised recommendations