Journal of Cluster Science

, Volume 29, Issue 6, pp 1345–1352 | Cite as

A Single-Molecule Magnet Tetranuclear [Mn 3 III MnIVO3Cl] Complex with Bis(diisopropylphosphinyl)imide Ligands

  • Ying Zhang
  • Jing-Jing Zhang
  • Ai-Quan JiaEmail author
  • Zhi-Feng Xin
  • Qian-Feng ZhangEmail author
Original Paper


Treatment of Mn(OAc)2·4H2O with 3 equiv. HN(iPr2PO)2 in the presence of nBu4NCl in acetonitrile resulted in isolation of a tetranuclear {Mn 3 III MnIV} complex [Mn4(μ3-O)3(μ3-Cl)(μ-OAc)3{N(iPr2PO)2}3]·0.5C6H14 (1·0.5C6H14), and a dinuclear {MnIIMnIII} complex [Mn2{N(iPr2PO)2}{μ2,η3-(iPrPO2)NH(iPr2PO)}2{η2-(iPrPO2)NH(iPr2PO)}2]·0.25AcOH (2·0.25AcOH) with bis(diisopropylphosphinyl)imide ligands. The solid-state structures of two complexes have been established by single-crystal X-ray crystallography. The tetranuclear complex 1 belongs to a family of {Mn 3 III MnIVO3X} single-molecule magnets (SMMs) with effective energy barrier of 14.3 K by some further magnetic characterizations.

Graphical Abstract

A [Mn 3 III MnIVO3Cl]-core-based [Mn4(μ3-O)3(μ3-Cl)(OAc)3{N(iPr2PO)2}3] complex with single-molecule magnet (SMM) behaviour was prepared and structurally characterized, exhibiting slow magnetization relaxation under zero applied dc field with τ0 = 9.0 × 10−7 s and relaxation barrier Ueff = 14.3 K.


Manganese Single molecule magnet (SMM) Mixed-valence manganese complex Bis(diisopropylphosphinyl)imide ligand Crystal structure 



This project was supported by the Natural Science Foundation of China (Grant No. 21471003). We thank Prof. Annie K. Powell for the magnetic measurements.


  1. 1.
    S. Hill, R. S. Edwards, N. Aliaga-Alcalde, and G. Christou (2003). Science 302, 1015.CrossRefGoogle Scholar
  2. 2.
    W. Wernsdorfer, N. Allaga-Alcalde, D. N. Hendrlckson, and G. Christou (2002). Nature 416, 406.CrossRefGoogle Scholar
  3. 3.
    G. E. Kostakis, A. M. Ako, and A. K. Powell (2010). Chem. Soc. Rev. 39, 2238.CrossRefGoogle Scholar
  4. 4.
    C.-I. Yang, Z.-Z. Zhang, and S.-B. Lin (2015). Coord. Chem. Rev. 289–290, 289.CrossRefGoogle Scholar
  5. 5.
    J.-L. Liu, Y.-C. Chen, and M.-L. Tong (2018). Chem. Soc. Rev. 47, 2431.CrossRefGoogle Scholar
  6. 6.
    M. Ding, G. E. Cutsail III, D. Aravena, M. Amoza, M. Rouzières, P. Dechambenoit, Y. Losovyj, M. Pink, E. Ruiz, R. Clérac, and J. M. Smith (2016). Chem. Sci. 7, 6132.CrossRefGoogle Scholar
  7. 7.
    H. J. Epply, H.-L. Tsai, N. de Vries, K. Folting, G. Christou, and D. N. Hendrickson (1995). J. Am. Chem. Soc. 117, 301.CrossRefGoogle Scholar
  8. 8.
    A. Caneschi, D. Gatteschi, R. Sessoli, A.-L. Barra, L.-C. Brunel, and M. Guillot (1991). J. Am. Chem. Soc. 113, 5873.CrossRefGoogle Scholar
  9. 9.
    Z.-M. Zhang, S. Yao, Y.-G. Li, H.-H. Wu, Y.-H. Wang, M. Rouzières, R. Clérac, Z.-M. Su, and E.-B. Wang (2013). Chem. Commun. 49, 2515.CrossRefGoogle Scholar
  10. 10.
    J. Martinez-Lillo, N. Dolan, and E. K. Brechin (2014). Dalton Trans. 43, 4408.CrossRefGoogle Scholar
  11. 11.
    S. K. Langley, R. A. Stott, N. F. Chilton, B. Moubaraki, and K. S. Murray (2011). Chem. Commun. 47, 6281.CrossRefGoogle Scholar
  12. 12.
    H. Andres, R. Basler, H. U. Güdel, G. Aromi, G. Christou, H. Büttner, and B. Ruffle (2000). J. Am. Chem. Soc. 122, 12469.CrossRefGoogle Scholar
  13. 13.
    A. Sieber, G. Chaboussant, R. Bircher, C. Boskovic, H. U. Güdel, G. Christou, and H. Mutka (2004). Phys. Rev. B 70, 172413.CrossRefGoogle Scholar
  14. 14.
    J.-Z. Wu, F. D. Angelis, T. G. Carrell, G. P. A. Yap, J. Sheats, R. Car, and G. C. Dismukes (2006). Inorg. Chem. 45, 189.CrossRefGoogle Scholar
  15. 15.
    S. Maheswaran, G. Chastanet, S. J. Teat, T. Mallah, R. Sessoli, W. Wernsdorfer, and R. E. P. Winpenny (2005). Angew. Chem. Int. Ed. 44, 5044.CrossRefGoogle Scholar
  16. 16.
    O. A. Adebayo, K. A. Abboud, and G. Christou (2017). Inorg. Chem. 56, 11352.CrossRefGoogle Scholar
  17. 17.
    A. R. Chakravarty, F. A. Cotton, D. A. Tocher, and J. H. Tocher (1985). Organometallics 4, 8.CrossRefGoogle Scholar
  18. 18.
    G. M. Sheldrick SADABS (University of Göttingen, Germany, 1996).Google Scholar
  19. 19.
    G. M. Sheldrick SHELXTL Software Reference Manual (Version 5.1) (Bruker AXS Inc., Madison, 1997).Google Scholar
  20. 20.
    G. M. Sheldrick (2008). Acta Crystallogr. A 64, 112.CrossRefGoogle Scholar
  21. 21.
    W. Wernsdorfer (2001). Adv. Chem. Phys. 118, 99.Google Scholar
  22. 22.
    S. Wang, H.-L. Tsai, E. Libby, K. Folting, W. E. Streib, D. N. Hendrickson, and G. Christou (1996). Inorg. Chem. 35, 7578.CrossRefGoogle Scholar
  23. 23.
    G.-C. Wang, H. Y. Sung, I. D. Williams, and W.-H. Leung (2012). Inorg. Chem. 51, 3640.CrossRefGoogle Scholar
  24. 24.
    K.-C. Au-Yeung, Y.-M. So, G.-C. Wang, H. H.-Y. Sung, I. D. Williams, and W.-H. Leung (2016). Dalton Trans. 45, 5434.CrossRefGoogle Scholar
  25. 25.
    N. E. Brese and M. O’Keeffe (1991). Acta Crystallogr. Sect. B: Struct. Sci. 47, 192.CrossRefGoogle Scholar
  26. 26.
    D. I. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B: Struct. Sci. 41, 244.CrossRefGoogle Scholar
  27. 27.
    N. Aliaga-Alcalde, R. S. Edwards, S. O. Hill, W. Wernsdorfer, K. Folting, and G. Christou (2004). J. Am. Chem. Soc. 126, 12503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Engineering and Applied ChemistryAnhui University of TechnologyMa’anshanPeople’s Republic of China

Personalised recommendations