Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1201–1207 | Cite as

Decay of Hexaniobate Complexes of Mn(IV) and Pt(IV) in Alkaline Solutions: Some New Hexaniobate Salts

  • Alexandra A. Shmakova
  • Rishat R. Shiriyazdanov
  • Albina R. Karimova
  • Nikolay B. Kompankov
  • Pavel A. Abramov
  • Maxim N. Sokolov
Original Paper

Abstract

This research summarizes the behavior [Mn(Nb6O19)2]12− and [(Nb6O19)2(Pt(OH)2)2]12− in basic solutions at pH 12. After heating of [Mn(Nb6O19)2]12− for 20 min at 60° in the presence of NaOH new very unstable phase Na8[Nb6O19]·25H2O (1) was obtained. Gentle (60 °C) heating of a solution of [(Nb6O19)2(Pt(OH)2)2]12− for 10 min in the presence of NaOH causes rearrangement into [Pt(Nb6O19)2]12−, which was isolated as Na12[Pt(Nb6O19)2]·52H2O (2). Longer heating yields white insoluble amorphous precipitate and crystals of a new hexaniobate phase K5Na3[Nb6O19]·9H2O (3). Crystal structures of the products and their structural relationship with known analogs are discussed.

Keywords

Polyoxoniobates Manganese Platinum Alkaline solutions 

Notes

Acknowledgements

The NIIC team thanks Federal Agency for Scientific Organizations for funding. This work was done within the framework of implementation of a project part of the state task for 2017–2019 No. 10.1448.2017/4.6.

Supplementary material

10876_2018_1439_MOESM1_ESM.docx (395 kb)
Supplementary material 1 (DOCX 395 kb)

References

  1. 1.
    M. K. Kinnan, W. R. Creasy, L. B. Fullmer, H. L. Schreuder-Gibson, and M. Nyman (2014). Eur. J. Inorg. Chem. 2014 2361–2367.Google Scholar
  2. 2.
    W. Guo, H. Lv, K. P. Sullivan, W. O. Gordon, A. Balboa, G. W. Wagner, D. G. Musaev, J. Bacsa, and C. L. Hill (2016). Angew. Chemie Int. Ed. 55, 7403–7407.CrossRefGoogle Scholar
  3. 3.
    Q. Wang, R. C. Chapleski, A. M. Plonka, W. O. Gordon, W. Guo, T.-D. Nguyen-Phan, C. H. Sharp, N. S. Marinkovic, S. D. Senanayake, J. R. Morris, C. L. Hill, D. Troya, and A. I. Frenkel (2017). Sci. Rep. 7, 773.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    P. Huang, C. Qin, Z.-M. Su, Y. Xing, X.-L. Wang, K.-Z. Shao, Y.-Q. Lan, and E.-B. Wang (2012). J. Am. Chem. Soc. 134, 14004–14010.CrossRefPubMedGoogle Scholar
  5. 5.
    T. Kitano, T. Shishido, K. Teramura, and T. Tanaka (2014). Catal. Today 226, 97–102.CrossRefGoogle Scholar
  6. 6.
    N. E. Thornburg, S. L. Nauert, A. B. Thompson, and J. M. Notestein (2016). ACS Catal. 6, 6124–6134.CrossRefGoogle Scholar
  7. 7.
    P. Carniti, A. Gervasini, and M. Marzo (2008). J. Phys. Chem. C 112, 14064–14074.CrossRefGoogle Scholar
  8. 8.
    J. Xi, Q. Xia, Y. Shao, D. Ding, P. Yang, X. Liu, G. Lu, and Y. Wang (2016). Appl. Catal. B Environ. 181, 699–706.CrossRefGoogle Scholar
  9. 9.
    R. Tesser, R. Vitiello, G. Carotenuto, C. Garcia Sancho, A. Vergara, P. J. Maireles, C. Torres, C. Li, and M. Di Serio (2015). Catal. Sustain Energy 1, 33–42.Google Scholar
  10. 10.
    A. A. Kiss, A. C. Dimian, and G. Rothenberg (2008). Energy Fuels 22, 598–604.CrossRefGoogle Scholar
  11. 11.
    C. Lamy, S. Rousseau, E. Belgsir, C. Coutanceau, and J.-M. Léger (2004). Electrochim. Acta 49, 3901–3908.CrossRefGoogle Scholar
  12. 12.
    P. Justin, P. Hari Krishna Charan, and G. Ranga Rao (2010). Appl. Catal. B Environ. 100, 510–515.CrossRefGoogle Scholar
  13. 13.
    X. Kong, D. Hu, P. Wen, T. Ishii, Y. Tanaka, and Q. Feng (2013). Dalton Trans. 42, 7699.CrossRefPubMedGoogle Scholar
  14. 14.
    B. W. Dale and M. T. Pope (1967). Chem. Commun. 0, 792.Google Scholar
  15. 15.
    M. T. Pope and B. W. Dale (1968). Q. Rev. Chem. Soc. 22, 527.CrossRefGoogle Scholar
  16. 16.
    C. M. Flynn and G. D. Stucky (1969). Inorg. Chem. 8, 335–344.CrossRefGoogle Scholar
  17. 17.
    C. M. Flynn and O. D. Stucky (1969). Inorg. Chem. 8, 332–334.CrossRefGoogle Scholar
  18. 18.
    P. T. Ma, G. Chen, G. Wang, and J. P. Wang (2011). Russ. J. Coord. Chem. 37, 772–775.CrossRefGoogle Scholar
  19. 19.
    P. A. Abramov, C. Vicent, N. B. Kompankov, A. L. Gushchin, and M. N. Sokolov (2015). Chem. Commun. 51, 4021–4023.CrossRefGoogle Scholar
  20. 20.
    Z. Liang, D. Zhang, Q. Liu, P. Ma, J. Niu, and J. Wang (2015). Inorg. Chem. Commun. 54, 19–20.CrossRefGoogle Scholar
  21. 21.
    O. V. Shuvaeva, A. A. Zhdanov, T. E. Romanova, P. A. Abramov, and M. N. Sokolov (2017). Dalton Trans. 46, 3541–3546.CrossRefPubMedGoogle Scholar
  22. 22.
    P. A. Abramov, M. M. Akhmetova, T. E. Romanova, A. S. Bogomyakov, M. V. Fedin, and M. N. Sokolov (2018). Inorg. Chim. Acta 473, 268–274.CrossRefGoogle Scholar
  23. 23.
    G. M. Sheldrick SADABS (University of Göttingen, Göttingen, 1996).Google Scholar
  24. 24.
    G. M. Sheldrick (2015). Acta Cryst. Sect. A Found. Adv. 71, 3–8.CrossRefGoogle Scholar
  25. 25.
    C. B. Hübschle, G. M. Sheldrick, and B. Dittrich (2011). J. Appl. Crystallogr. 44, 1281–1284.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    J. R. Black, M. Nyman, and W. H. Casey (2006). J. Am. Chem. Soc. 128, 14712–14720.CrossRefPubMedGoogle Scholar
  27. 27.
    W. G. Klemperer and K. A. Marek (2013). Eur. J. Inorg. Chem. 28, 1762–1771.CrossRefGoogle Scholar
  28. 28.
    C. J. Besecker, V. W. Day, W. G. Klemperer, and M. R. Thompson (1985). Inorg. Chem. 24, 44–50.CrossRefGoogle Scholar
  29. 29.
    M. Nyman (2011). Dalton Trans. 40, 8049–8058.CrossRefPubMedGoogle Scholar
  30. 30.
    M. N. Jackson, M. K. Kamunde-Devonish, B. A. Hammann, L. A. Wills, L. B. Fullmer, S. E. Hayes, P. H.-Y. Cheong, W. H. Casey, M. Nyman, and D. W. Johnson (2015). Dalton Trans. 44, 16982–17006.CrossRefPubMedGoogle Scholar
  31. 31.
    M. Nyman (2017). Coord. Chem. Rev. 352, 461–472.CrossRefGoogle Scholar
  32. 32.
    A. Goiffon, E. Philippot, and M. Maurin (1980). Rev. Chim. Min. 17, 466–476.Google Scholar
  33. 33.
    T. M. Anderson, M. A. Rodriguez, F. Bonhomme, J. N. Bixler, T. M. Alam, and M. Nyman (2007). Dalton Trans. 9226, 4517–4522.CrossRefGoogle Scholar
  34. 34.
    P. A. Abramov and M. N. Sokolov (2017). J. Struct. Chem. 58, 1411–1417.CrossRefGoogle Scholar
  35. 35.
    G. K. L. Goh, F. F. Lange, S. M. Haile, and C. G. Levi (2003). J. Mater. Res. 18, 338–345.CrossRefGoogle Scholar
  36. 36.
    C. Liu, H. Xu, H. Li, L. Liu, L. Xu, and Z. Ye (2011). Korean J. Chem. Eng. 28, 1126–1132.CrossRefGoogle Scholar
  37. 37.
    P. A. Abramov, A. M. Abramova, E. V. Peresypkina, A. L. Gushchin, S. A. Adonin, and M. N. Sokolov (2011). J. Struct. Chem. 52, 1012–1017.CrossRefGoogle Scholar
  38. 38.
    S. N. Britvin, O. I. Siidra, A. Lotnyk, L. Kienle, S. V. Krivovichev, and W. Depmeier (2012). Inorg. Chem. Commun. 25, 18–20.CrossRefGoogle Scholar
  39. 39.
    P. A. Abramov, T. P. Zemerova, and M. N. Sokolov (2017). J. Clust. Sci. 28, 725–734.CrossRefGoogle Scholar
  40. 40.
    A. V. Besserguenev, M. H. Dickman, and M. T. Pope (2001). Inorg. Chem. 40, 2582–2586.CrossRefPubMedGoogle Scholar
  41. 41.
    J.-P. Wang, P.-T. Ma, J.-Y. Niu, and Z. Krist (2006). N. Cryst. Struct. 221, 235–237.Google Scholar
  42. 42.
    D. Vasilchenko, S. Berdugin, S. Tkachev, I. Baidina, G. Romanenko, O. Gerasko, and S. Korenev (2015). Inorg. Chem. 54, 4644–4651.CrossRefPubMedGoogle Scholar
  43. 43.
    P. Klonowski, J. C. Goloboy, F. J. Uribe-Romo, F. Sun, L. Zhu, F. Gándara, C. Wills, R. J. Errington, O. M. Yaghi, and W. G. Klemperer (2014). Inorg. Chem. 53, 13239–13246.CrossRefPubMedGoogle Scholar
  44. 44.
    U. Lee, H.-C. Joo, K.-M. Park, S. S. Mal, U. Kortz, B. Keita, and L. Nadjo (2008). Angew. Chemie Int. Ed. 47, 793–796.CrossRefGoogle Scholar
  45. 45.
    S. Dugar, N. V. Izarova, S. S. Mal, R. Fu, H.-C. Joo, U. Lee, N. S. Dalal, M. T. Pope, G. B. Jameson, and U. Kortz (2016). N. J. Chem. 40, 923–927.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Ufa State Petroleum Technological UniversityUfaRussia

Personalised recommendations