Journal of Cluster Science

, Volume 29, Issue 6, pp 1255–1267 | Cite as

Structural, Magnetic, and Catalytic Properties of Mn-Doped Titania Nanoparticles Synthesized by a Sol–Gel Process

  • M. Chandra Sekhar
  • B. Purusottam Reddy
  • S. V. Prabhakar Vattikuti
  • Gnanendra Shanmugam
  • Chang-Hoi AhnEmail author
  • Si-Hyun ParkEmail author
Original Paper


TiO2 nanoparticles (NPs) doped with different concentrations of manganese (1–8 at.%) were synthesized by sol–gel method and characterized to determine their structure, optical, and magnetic properties. X-ray diffraction analysis confirmed the formation of Mn-doped TiO2 NPs with anatase structure and that no impurity phases were present. X-ray photoelectron spectroscopic data indicated that the amount of Mn in the doped TiO2 samples was slightly lower than the theoretical value, and scanning electron microscope images illustrated a morphology consisting of un-aggregated, well-arranged NPs with a homogeneous size distribution. Particle sizes determined from transmission electron microscope images were found to be 17 and 11 nm for pure and Mn-doped TiO2, respectively. The band gap for pure TiO2 was calculated to be 3.26 eV from ultraviolet–visible reflectance spectra, which decreased to 2.70 eV following 8% Mn-doping. The as-prepared pure TiO2 NPs were found to be weakly paramagnetic at room temperature from vibrating sample magnetometer; however, a transformation from paramagnetic to weak ferromagnetism at room temperature was observed for Mn-doped TiO2 (5 at.%) NPs. Mn doped TiO2 (5 at.%) NPs exhibited the higher antibacterial activity against Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa than the pure TiO2 NPs.


Structure, optical, magnetic properties Photocatalysis Antibacterial properties 



This work was supported by the 2018 Yeungnam University Research Grant.


  1. 1.
    Y.-C. Chang (2015). Cadmium hydroxide and oxide nanoporous walls with high performance photocatalytic properties. J. Alloys Compd. 637, 112–118.CrossRefGoogle Scholar
  2. 2.
    A. C. Nwanya, P. R. Deshmukh, R. U. Osuji, M. Maaza, C. D. Lokhande, and F. I. Ezema (2015). Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO–CdO nano-composite thin film. Sens. Actuators B 206, 671–678.CrossRefGoogle Scholar
  3. 3.
    S. Prabhu, M. Pudukudy, S. Sohila, S. Harish, M. Navaneethan, D. Navaneethan, R. Ramesh, and Y. Hayakawa (2018). Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation. Opt. Mater. 79, 186–195.CrossRefGoogle Scholar
  4. 4.
    M. Pudukudy and Z. Yaakob (2013). Hydrothermal synthesis of mesostructured ZnO micropyramids with enhanced photocatalytic performance. Superlattices Microstruct. 63, 47–57.CrossRefGoogle Scholar
  5. 5.
    M. Pudukudy, Z. Yaakob, R. Rajendran, and T. Kandaramath (2014). Photodegradation of methylene blue over novel 3D ZnO microflowers with hexagonal pyramid-like petals. React. Kinet. Mech. Catal. 112, 527–542.CrossRefGoogle Scholar
  6. 6.
    M. Pudukudy and Z. Yaakob (2015). Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity. J. Clust. Sci. 26, 1187–1201.CrossRefGoogle Scholar
  7. 7.
    M. Pudukudy and Z. Yaakob (2014). Facile solid state synthesis of ZnO hexagonal nanogranules with excellent photocatalytic activity. Appl. Surf. Sci. 292, 520–530.CrossRefGoogle Scholar
  8. 8.
    M. Pudukudy, A. Hetieqa, and Z. Yaakob (2014). Synthesis, characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures. Appl. Surf. Sci. 319, 221–229.CrossRefGoogle Scholar
  9. 9.
    M. Pudukudy and Z. Yaakob (2014). Simple chemical synthesis of novel ZnO nanostructures: role of counter ions. Solid State Sci. 30, 78–88.CrossRefGoogle Scholar
  10. 10.
    M. C. Wang, H. J. Lin, and T. S. Yang (2009). Characteristics and optical properties of iron ion (Fe3+)-doped titanium oxide thin films prepared by a sol–gel spin coating. J. Alloys Compd. 473, 394–400.CrossRefGoogle Scholar
  11. 11.
    M. B. Suwarnkar, R. S. Dhabbe, A. N. Kadam, and K. M. Garadkar (2014). Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method. Ceram. Int. 40, 5489–5496.CrossRefGoogle Scholar
  12. 12.
    M. A. Barakat, H. Schaeffer, G. Hayes, and S. Isamat-Shah (2005). Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl. Catal. B Environ. 57, 23–30.CrossRefGoogle Scholar
  13. 13.
    M. Manzoor, A. Rafiq, M. Ikram, M. Nafees, and S. Ali (2018). Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method. Int. Nano Lett. Scholar
  14. 14.
    K. Gopinath, S. Kumaraguru, K. Bhakyaraj, S. Thirumal, and A. Arumugam (2016). Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity. Superlattices Microstruct. 92, 100–110.CrossRefGoogle Scholar
  15. 15.
    C. Kahattha, N. Wongpisutpaisan, N. Vittayakorn, and W. Pecharapa (2013). Physical properties of V-doped TiO2 nanoparticles synthesized by sonochemical-assisted process. Ceram. Int. 39, S389–S393.CrossRefGoogle Scholar
  16. 16.
    K. Dai, T. Peng, H. Chen, J. Liu, and L. Zan (2009). Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension. Environ. Sci. Technol. 43, (5), 1540–1545.CrossRefPubMedGoogle Scholar
  17. 17.
    R. S. Dubey and S. Singh (2017). Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results Phys. 7, 1283–1288.CrossRefGoogle Scholar
  18. 18.
    M. Tsega and F. B. Dejene (2016). Structural and optical properties of Ce-doped TiO2 nanoparticles using the sol–gel process. ECS J. Solid State Sci. Technol. 5, R17–R20.CrossRefGoogle Scholar
  19. 19.
    L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, and H. Fu (2006). Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J. Phys. Chem. B 110, 17860–17865.CrossRefPubMedGoogle Scholar
  20. 20.
    Q. R. Deng, X. H. Xia, M. L. Gua, Y. Gao, and G. Shao (2011). Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity. Mater. Lett. 65, 2051–2054.CrossRefGoogle Scholar
  21. 21.
    I. Zutic, J. Fabian, and S. D. Sarma (2004). Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323.CrossRefGoogle Scholar
  22. 22.
    S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner (2004). Topical review: dilute magnetic semiconducting oxides. Semicond. Sci. Technol. 19, R59–R74.CrossRefGoogle Scholar
  23. 23.
    S. Zaman, S. Yeasmin, Y. Inatsu, C. Ananchaipattana, and M. L. Bari (2014). Low-cost sustainable technologies for the production of clean drinking water—a review. Int. J. Photoenergy 5, 42–53.Google Scholar
  24. 24.
    S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, and W. Gernjak (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147, 1–59.CrossRefGoogle Scholar
  25. 25.
    J. Podporska-Carroll, E. Panaitescu, B. Quilty, L. Wang, L. Menon, and S. C. Pillai (2015). Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Appl. Catal. B Environ. 176–177, 70–75.CrossRefGoogle Scholar
  26. 26.
    D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai (2013). Anti-bacterial activity of indoor-light activated photocatalysts. Appl. Catal. B Environ. 130–131, 106–111.CrossRefGoogle Scholar
  27. 27.
    C. W. Dunnill, Z. Ansari, A. Kafizas, S. Perni, D. J. Morgan, M. Wilson, and I. P. Parkin (2011). Visible light photocatalysts—N-doped TiO2 by sol–gel, enhanced with surface bound silver nanoparticle islands. J. Mater. Chem. 21, 11854–11861.CrossRefGoogle Scholar
  28. 28.
    A. A. Ashkarran, H. Hamidinezhad, H. Haddadi, and M. Mahmoudi (2014). Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Appl. Surf. Sci. 301, 338–345.CrossRefGoogle Scholar
  29. 29.
    J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, and J. Zhao (2005). Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol. 39, 1175–1179.CrossRefPubMedGoogle Scholar
  30. 30.
    H. M. Yadav, S. V. Otari, V. B. Koli, S. S. Mali, C. K. Hong, S. H. Pawar, and S. D. Delekar (2014). Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J. Photochem. Photobiol. A Chem. 280, 32–38.CrossRefGoogle Scholar
  31. 31.
    B. Cao, S. Cao, P. Dong, J. Gao, and J. Wang (2013). High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation. Mater. Lett. 93, 349–352.CrossRefGoogle Scholar
  32. 32.
    J. A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N. C. Castillo, J. Kiwi, and C. Pulgarin (2008). Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl. Catal. B Environ. 84, 448–456.CrossRefGoogle Scholar
  33. 33.
    J. A. Rengifo-Herrera, K. Pierzchała, A. Sienkiewicz, L. Forró, J. Kiwi, and C. Pulgarin (2009). Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and Visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Appl. Catal. B Environ. 88, 398–406.CrossRefGoogle Scholar
  34. 34.
    J. A. Rengifo-Herrera, J. Kiwi, and C. Pulgarin (2009). N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation. J. Photochem. Photobiol. A Chem. 205, 109–115.CrossRefGoogle Scholar
  35. 35.
    J. A. Rengifo-Herrera and C. Pulgarin (2010). Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Sol. Energy 84, 37–43.CrossRefGoogle Scholar
  36. 36.
    V. Etacheri, G. Michlits, M. K. Seery, S. J. Hinder, and S. C. Pillai (2013). A highly efficient TiO2−xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl. Mater. Interfaces 5, 1663–1672.CrossRefPubMedGoogle Scholar
  37. 37.
    M. Chandra Sekhar, B. Purusottam Reddy, K. Mallikarjuna, G. Shanmugam, C.-H. Ahn, and S.-H. Park (2018). Synthesis, characterization, and analysis of enhanced photocatalytic activity of Zr-doped TiO2 nanostructured powders under UV light. Mater. Res. Exp. 5, 015024.CrossRefGoogle Scholar
  38. 38.
    A. Manivannan, M. S. Seehra, S. B. Majumder, and R. S. Katiyar (2003). Magnetism of Co-doped titania thin films prepared by spray pyrolysis. Appl. Phys. Lett. 83, 111.CrossRefGoogle Scholar
  39. 39.
    J. M. Xie, D. L. Jiang, M. Chen, D. Li, J. J. Zhu, and X. M. Lu (2010). Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 372, 107–114.CrossRefGoogle Scholar
  40. 40.
    B. Murugan and A. V. Ramaswamy (2008). Chemical states and redox properties of Mn/CeO2–TiO2 nanocomposites prepared by solution combustion route. J. Phys. Chem. C 112, 20429–20442.CrossRefGoogle Scholar
  41. 41.
    M. Yoon, M. Seo, C. Jeong, J. H. Jang, and K. S. Jeon (2005). Synthesis of liposome-templated titania nanodisks: optical properties and photocatalytic activities. Chem. Mater. 17, 6069–6079.CrossRefGoogle Scholar
  42. 42.
    C. H. Lee, B. A. Nam, W. K. Choi, J. K. Lee, D. J. Choi, and Y. J. Oh (2011). Mn:SnO2 ceramics as p-type oxide semiconductor. J. Mater. Lett. 65, 722–725.CrossRefGoogle Scholar
  43. 43.
    M. A. Kostowskyj, D. W. Kirk, and S. J. Thorpe (2010). Ag and Ag–Mn nanowire catalysts for alkaline fuel cells. Int. J. Hydrogen Energy 35, 5666–5672.CrossRefGoogle Scholar
  44. 44.
    M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, and R. Xu (2002). Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide. Chem. Mater. 14, 1974–1980.CrossRefGoogle Scholar
  45. 45.
    B. D. Cullity and S. R. Stock Elements of X-Ray Diffraction, 3rd ed (Prentice-Hall, Upper Saddle River, 2001).Google Scholar
  46. 46.
    M. Pal, U. Pal, J. M. Gracia, Y. Jimenez, and F. Perez-Rodriguez (2012). Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 7, 1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    G. Shao (2009). Red shift in manganese- and iron-doped TiO2: a DFT + U analysis. J. Phys. Chem. C 113, (16), 6800–6808.CrossRefGoogle Scholar
  48. 48.
    S. Bhattacharyya, A. Pucci, and D. Zitoun (2008). One-pot fabrication and magnetic studies of Mn-doped TiO2 nanocrystals with an encapsulating carbon layer. Nanotechnology 19, 495711.CrossRefPubMedGoogle Scholar
  49. 49.
    J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald (2005). Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173.CrossRefPubMedGoogle Scholar
  50. 50.
    J. E. Jaffe, T. C. Drouban, and S. A. Chambers (2005). Oxygen vacancies and ferromagnetism in CoxTi1−xO2−x−y. J. Appl. Phys. 97, 073908.CrossRefGoogle Scholar
  51. 51.
    K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and K. M. Krishnan (2005). Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett. 94, 157204.CrossRefPubMedGoogle Scholar
  52. 52.
    D. Peng, L. Fa-Min, Z. Chuang-Cang, and A. L. Et (2010). Structure, room temperature magnetic and optical properties of Mn-doped TiO2 nano powders prepared by the sol–gel process. Chin. Phys. 19, 118102.CrossRefGoogle Scholar
  53. 53.
    B. Ohtani, Y. Ogawa, and S. I. Nishimoto (1997). Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. Phys. Chem. B 101, 3746–3752.CrossRefGoogle Scholar
  54. 54.
    J. Matos, J. Laine, and J. M. Herrmann (1998). Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl. Catal. B:Environ. 18, 281–291.CrossRefGoogle Scholar
  55. 55.
    K. V. Subba Rao, B. Lavedrine, and P. Boule (2003). Influence of metallic species on TiO2 for photocatalytic degradation of dyes and dye intermediates. J. Photochem. Photobiol. A Chem. 154, 189–193.CrossRefGoogle Scholar
  56. 56.
    Y. Matsumura, K. Yoshikata, S. Kunisaki, and T. Tsuchido (2003). Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69, (7), 4278–4281.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, and Y. B. Chen (2009). Antibacterial activity and mechanism of silver NPs on Escherichia coli. J. Appl. Microbiol. Biotechnol. 58, 1115–1122.Google Scholar
  58. 58.
    K. R. Raghupati, R. T. Koodali, and A. C. Manna (2011). Size dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide NPs. Langmuir 27, 4020–4028.CrossRefGoogle Scholar
  59. 59.
    J. Thiel, L. Pakstis, S. Buzby, M. Raffi, C. Ni, D. J. Pochan, and S. I. Shah (2007). Antibacterial properties of silver-doped titania. Small 3, 799–803.CrossRefPubMedGoogle Scholar
  60. 60.
    S. S. Djokic and R. E. Burrel (1998). Behavior of silver in physiological solutions. J. Electrochem. Soc. 145, 1426–1430.CrossRefGoogle Scholar
  61. 61.
    R. K. Kunkalekar, M. M. Naik, S. K. Dubey, and A. V. Salker (2013). Antibacterial activity of silver-doped manganese dioxide nanoparticles on multidrug-resistant bacteria. Chem. Technol. Biotechnol. 88, 873–877.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Chandra Sekhar
    • 1
    • 4
  • B. Purusottam Reddy
    • 1
  • S. V. Prabhakar Vattikuti
    • 2
  • Gnanendra Shanmugam
    • 3
  • Chang-Hoi Ahn
    • 1
    Email author
  • Si-Hyun Park
    • 1
    Email author
  1. 1.Department of Electronic EngineeringYeungnam UniversityGyeongsan-siRepublic of Korea
  2. 2.Department of Mechanical EngineeringYeungnam UniversityGyeongsan-siRepublic of Korea
  3. 3.Department of BiotechnologyYeungnam UniversityGyeongsan-siRepublic of Korea
  4. 4.Department of PhysicsMadanapalle Institute of Technology and ScienceMadanapalleIndia

Personalised recommendations