Journal of Cluster Science

, Volume 29, Issue 6, pp 1123–1131 | Cite as

Structural Physico Chemical Studies and Biological Analyses of a Cadmium Cluster Complex

  • Abdelhamid Chiheb DhiebEmail author
  • Imen Dridi
  • Maha Mathlouthi
  • Mohamed Rzaigui
  • Wajda Smirani
Original Paper


The decachlorocadmate (II) cluster templated with homopiperazinium cation (C5H14N2)2[Cd3Cl10]·4H2O has been grown using the slow evaporation method and characterized by X-ray diffraction, FTIR, Raman, 1H and 13C-NMR spectroscopies. Thermal investigations have also been made for the title compound. The X-ray structural analysis has elucidated the different inter-contacts in the crystal structure between the [Cd3Cl10]4− clusters, the water molecules and homopiperazinium entities stabilizing the 3D-supramolecular structure. These thermal investigations have also revealed a double dehydration phenomenon at around 96 and 125 °C. The TG curve shows that the compound is stable up to the decomposition temperature of around 317 °C. The title compound has been tested for its in vitro antioxidant and antibacterial activities. The 1,1-diphenyl-2-picrylhydrazil (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) test has shown that the compound synthesized is characterized by a significant antioxidant activity when compared to ascorbic acid and that it is active against all the tested bacteria. Nevertheless, bacteria sensitivity depends on the bacterial membrane structure. Indeed gram-negative bacteria are more sensitive to the compound tested than the gram-positive ones.


Decachlorocadmate Crystal structure Thermal investigation Antioxidant activity Antibacterial activity 



The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research and the technical help for the X-ray data collection rendered by N. Chniba-Boudjada, Professor at CNRS, Institut Neel, Grenoble.

Supplementary material

10876_2018_1427_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4906 kb)


  1. 1.
    B. Staśkiewicz, J. Baran, and Z. Czapla (2013). J. Phys. Chem. Solids 74, 1848.CrossRefGoogle Scholar
  2. 2.
    I. Chaabane, F. Hlel, and K. Guidara (2008). PMC Phys. B. 1, 11.CrossRefGoogle Scholar
  3. 3.
    A. B. Chrifa, A. B. Salah, and M. Loukil (2016). J. Cluster Sci. 27, 1335.CrossRefGoogle Scholar
  4. 4.
    T. J. K. L. G. Marzilli, G. L. Eichhorn, and L. Gunther, in T. G. Spiro (ed.), Nucleic Acid–Metal Ion Interaction (John Wiley and Sons, New York, 1980).Google Scholar
  5. 5.
    D. Phlip (1996). Adv. Mater. 8, 866.CrossRefGoogle Scholar
  6. 6.
    H.-J. Schneider (1991). Angew. Chem. Int. Ed. 30, 1417.CrossRefGoogle Scholar
  7. 7.
    N. Salah, B. Hamdi, and A. B. Salah (2016). J. Cluster Sci. 27, 1777.CrossRefGoogle Scholar
  8. 8.
    N. Kimizuka and T. Kunitake (1996). Adv. Mater. 8, 89.CrossRefGoogle Scholar
  9. 9.
    D. B. Mitzi, K. Chondroudis, and C. R. Kagan (2001). IBM J. Res. Dev. 45, 29.CrossRefGoogle Scholar
  10. 10.
    M. Mathlouthi, A. C. Dhieb, A. Valkonen, M. Rzaigui, and W. Smirani (2017). J. Cluster Sci. 28, 3159.CrossRefGoogle Scholar
  11. 11.
    G. M. Sheldrick, SHELXL97. Program for Crystal Structure Refinement (1997).Google Scholar
  12. 12.
    A. Braca, N. De Tommasi, L. Di Bari, C. Pizza, M. Politi, and I. Morelli (2001). J. Natl. Prod. 64, 892.CrossRefGoogle Scholar
  13. 13.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans (1999). Free Radic. Biol. Med. 26, 1231.CrossRefPubMedGoogle Scholar
  14. 14.
    P. A. Wayne, Reference Method for Broth Diluition Antifungical Susceptibility Testing of Yeasts: Approved Standard, 3rd ed. (National Committee for Clinical Laboratory Standards, 2008).Google Scholar
  15. 15.
    A. B. Corradi, M. R. Cramarossa, M. Saladini, L. P. Battaglia, and J. Giusti (1995). Inorg. Chim. Acta 230, 59.CrossRefGoogle Scholar
  16. 16.
    M. S. Ali, U. Mukhopadhyay, S. M. Shirvani, J. Thurston, K. H. Whitmire, and A. R. Khokhar (2002). Polyhedron 21, 125.CrossRefGoogle Scholar
  17. 17.
    Ö. Alver, C. Parlak, and M. Şenyel (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 793.CrossRefPubMedGoogle Scholar
  18. 18.
    A. C. Dhieb, A. Valkonen, M. Rzaigui, and W. Smirani (2015). J. Mol. Struct. 1102, 50.CrossRefGoogle Scholar
  19. 19.
    W. Smirani, C. B. Nasr, and M. Rzaigui (2004). Mater. Res. Bull. 39, 1103.CrossRefGoogle Scholar
  20. 20.
    S. Gunasekaran and B. Anita (2008). Indian J. Pure Appl. Phys. 46, 833.Google Scholar
  21. 21.
    J. Orive, E. S. Larrea, R. Fernandez de Luis, M. Iglesias, J. L. Mesa, T. Rojo, and M. I. Arriortua (2013). Dalton Trans. 42, 4500.CrossRefPubMedGoogle Scholar
  22. 22.
    V. Krishnakumar and S. Seshadri (2007). Spectrochim. Acta A Mol. Biomol. Spectrosc. 68, 833.CrossRefPubMedGoogle Scholar
  23. 23.
    H. Khili, N. Chaari, A. Madani, N. Ratel-Ramond, J. Jaud, and S. Chaabouni (2012). Polyhedron 48, 146.CrossRefGoogle Scholar
  24. 24.
    R. M. Silverstein, G. C. Bassler and T. C. Morrill, 3rd Edition, 248 (John Wiley & Sons Inc., 1974).Google Scholar
  25. 25.
    V. I. Torgashev, Y. I. Yuzyuk, F. Smutný, P. Vaněk, and B. Březina (1989). Phys. Status Solidi (b) 154, 777.CrossRefGoogle Scholar
  26. 26.
    R. P. Rathore, S. S. Khatri, and T. Chakraborty (1987). J. Raman Spectrosc. 18, 429.CrossRefGoogle Scholar
  27. 27.
    P. Szklarz, R. Jakubas, G. Bator, T. Lis, V. Kinzhybalo, and J. Baran (2007). J. Phys. Chem. Solids 68, 2303.CrossRefGoogle Scholar
  28. 28.
    R. Mokhlisse, M. Couzi, and P. L. Loyzance (1983). J. Phys. C 16, 1367.CrossRefGoogle Scholar
  29. 29.
    D. J. Betteridge (2000). Metabolism 49, 3.CrossRefPubMedGoogle Scholar
  30. 30.
    M. Essid, M. Rzaigui, and H. Marouani (2016). J. Mol. Struct. 1117, 257.CrossRefGoogle Scholar
  31. 31.
    S. Gatfaoui, A. Mezni, T. Roisnel, and H. Marouani (2017). J. Mol. Struct. 1139, 52.CrossRefGoogle Scholar
  32. 32.
    H. Koohsari, E. A. Ghaemi, M. Sadegh Sheshpoli, M. Jahedi, and M. Zahiri (2015). J. Med. Life 8, 38.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abdelhamid Chiheb Dhieb
    • 1
    Email author
  • Imen Dridi
    • 2
  • Maha Mathlouthi
    • 1
  • Mohamed Rzaigui
    • 1
  • Wajda Smirani
    • 1
  1. 1.Laboratoire de chimie des matériaux, Faculté des Sciences de BizerteUniversité de CarthageZarzounaTunisia
  2. 2.Unité de Biochimie des Lipides et Interaction des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie MoléculaireFaculté des Sciences de BizerteZarzouna, BizerteTunisia

Personalised recommendations