Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1193–1199 | Cite as

Ecofriendly Synthesis of Silver–Carboxy Methyl Cellulose Nanocomposites and Their Antibacterial Activity

  • Gang Li
  • Luqing Liu
  • Yonglin Sun
  • Huihong Liu
Original Paper
  • 76 Downloads

Abstract

A straightforward and environmentally benign method for the synthesis of silver nanoparticles (AgNPs) is reported in this paper. A sustainable and nontoxic polysaccharide carboxy methyl cellulose (CMC) was used as both reducing agent and stabilizer in the process of synthesizing AgNPs. By varying the precursor concentration, solution pH value, reaction temperature and duration, the highly stable and smaller sized AgNPs with narrow size distribution were obtained. The as-synthesized AgNPs were characterized using UV–Vis absorption spectroscopy, high resolution transmission electron microscopy, X-ray diffraction and zeta potential and size analyzer. Measurements of optical spectra showed that the surface plasmon resonance was localized around 404 nm. The TEM images showed that the particles are well dispersed and spherical in shape with an average particle diameter of 11.64 ± 2.32 nm which is less than the value (13.12 ± 1.54 nm) measured by dynamic light scattering. The zeta potential value of AgNPs was measured to be − 62.8 mV which indicated that CMC coated on the surface of as-synthesized AgNPs resulting in the negatively charged surface and the stable in nature. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive Staphylococcus aureus and gram negative Escherichia coli.

Keywords

Silver nanoparticles Carboxy methyl cellulose Green synthesis Antibacterial 

Notes

Acknowledgements

The authors thank the Foundation for Fostering Talents (2016zk017), Discipline Groups Project for Food Industrialization (2017xk008) from Hubei University of Arts and Sciences, and Discipline Innovation Team Project from Wuhan Textile University (201320) for the kind support of this work.

Funding

This study was funded by Hubei University of Arts and Science (2016zk017 and 2017xk008) for Dr. Yongling Sun and by Wuhan Textile University (201320) for Prof. Huihong Liu.

References

  1. 1.
    M. Divya, B. Vaseeharan, M. Abinaya, S. Vijayakumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Photochem. Photobiol. B 178, 211–218.CrossRefPubMedGoogle Scholar
  2. 2.
    H. E. Emam and H. B. Ahmed (2016). Carbohydr. Polym. 135, 300–307.CrossRefPubMedGoogle Scholar
  3. 3.
    A. Sannino, C. Demitri, and M. Madaghiele (2009). Materials 2, 353.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    M. Basuny, I. O. Ali, A. A. El-Gawad, M. F. Bakr, and T. M. Salama (2015). J. Sol-Gel. Sci. Technol. 75, 530–540.CrossRefGoogle Scholar
  5. 5.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3–10.CrossRefGoogle Scholar
  6. 6.
    U. Jinu, M. Gomathi, I. Saiqa, N. Geetha, G. Benelli, and P. Venkatachalam (2017). Microb. Pathog. 105, 86–95.CrossRefPubMedGoogle Scholar
  7. 7.
    R. Rajan, K. Chandran, S. L. Harper, S.-I. Yun, and P. T. Kalaichelvan (2015). Ind. Crops Prod. 70, 356–373.CrossRefGoogle Scholar
  8. 8.
    B. Mandal, A. P. Rameshbabu, S. R. Soni, A. Ghosh, S. Dhara, and S. Pal (2017). ACS Appl. Mater. Interfaces 9, 36583–36595.CrossRefPubMedGoogle Scholar
  9. 9.
    C. Dong, X. Zhang, and H. Cai (2014). J. Alloys Compd. 583, 267–271.CrossRefGoogle Scholar
  10. 10.
    P. Prema, S. Thangapandiyan, and G. Immanuel (2017). Carbohydr. Polym. 158, 141–148.CrossRefPubMedGoogle Scholar
  11. 11.
    S. M. Alshehri, A. Aldalbahi, A. B. Al-Hajji, A. A. Chaudhary, M. Panhuis, N. Alhokbany, and T. Ahamad (2016). Carbohydr. Polym. 138, 229–236.CrossRefPubMedGoogle Scholar
  12. 12.
    J. Chen, J. Wang, X. Zhang, and Y. Jin (2008). Mater. Chem. Phys. 108, 421–424.CrossRefGoogle Scholar
  13. 13.
    A. Hebeish, M. Hashem, M. A. El-Hady, and S. Sharaf (2013). Carbohydr. Polym. 92, 407–413.CrossRefPubMedGoogle Scholar
  14. 14.
    K. Y. Zheng, M. I. Setyawati, D. T. Leong, and J. P. Xie (2018). Coord. Chem. Rev. 357, 1–17.CrossRefGoogle Scholar
  15. 15.
    G. Benelli (2018). Environ. Sci. Pollut. Res. 25, 12329–12341.CrossRefGoogle Scholar
  16. 16.
    G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, and M. Galdiero (2015). Moleculles 20, 8856–8874.CrossRefGoogle Scholar
  17. 17.
    S. K. Bajpai, Y. M. Mohan, M. Bajpai, R. Tankhiwale, and V. Thomas (2007). J. Nanosci. Nanotechnol. 7, 2994–3010.CrossRefPubMedGoogle Scholar
  18. 18.
    G. D. Saratale, R. G. Saratale, G. Benelli, G. Kumar, A. Pugazhendhi, D.-S. Kim, and H.-S. Shin (2017). J. Clust. Sci. 28, 1709–1727.CrossRefGoogle Scholar
  19. 19.
    Y. J. Xu, S. S. Li, X. P. Yue, and W. L. Lu (2018). BioResources 13, 2150–2170.Google Scholar
  20. 20.
    J.C.F. de Winter (2013). Practical Assessment, Research & Evaluation, 18(10). http://pareonline.net/getvn.asp?v=18&n=10.
  21. 21.
    V. Thangaraj, S. Mahmud, W. Li, F. Yang, and H. H. Liu (2018). IET Nanobiotechnol. 12, 47–51.CrossRefGoogle Scholar
  22. 22.
    S. V. Kumar, A. P. Bafana, P. Pawar, A. Rahman, S. A. Dahoumane, and C. S. Jeffryes (2018). Sci. Rep. 8, 5106.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    X. H. Gao, L. Q. Wei, H. Yan, and B. S. Xu (2011). Mater. Lett. 65, 2963–2965.CrossRefGoogle Scholar
  24. 24.
    K. Kalwar and D. Shan (2018). Micro Nano Lett. 13, 277–280.CrossRefGoogle Scholar
  25. 25.
    M. R. Bindhu and M. Umadevi (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135, 373–378.CrossRefGoogle Scholar
  26. 26.
    G. Li, Y. L. Sun, and H. H. Liu (2018). J. Clust. Sci. 29, 177–184.CrossRefGoogle Scholar
  27. 27.
    S. F. Lu, Y. H. Wu, and H. H. Liu (2017). Mater. Lett. 196, 217–220.CrossRefGoogle Scholar
  28. 28.
    D.-Y. Kima, M. Kimb, S. Shindea, J.-S. Sungb, and G. Ghodake (2017). Colloids Surf. B 149, 162–167.CrossRefGoogle Scholar
  29. 29.
    M. Shah, V. Badwaik, Y. Kherde, H. K. Waghwani, T. Modi, Z. P. Aguilar, H. Rodgers, W. Hamilton, T. Marutharaj, C. Webb, et al. (2014). Front. Biosci. Landmark 19, 1320-U1274.CrossRefGoogle Scholar
  30. 30.
    M. P. Patil and G. D. Kim (2017). Appl. Microbiol. Biotechnol. 101, 79–92.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemical Engineering and Food ScienceHubei University of Arts and ScienceXiangyangChina
  2. 2.School of Chemistry and Chemical EngineeringWuhan Textile UniversityWuhanChina

Personalised recommendations