Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1115–1122 | Cite as

Preparation of Ag Nanoparticles in Ammonia by Using EDM and a Study of the Relationships Between Ammonia and Silver Nanoparticles

  • Kuo-Hsiung Tseng
  • Yu-Hung Lin
  • Der-Chi Tien
  • Tong-chi Wu
  • Leszek Stobinski
Original Paper
  • 81 Downloads

Abstract

This study used deionized water and ammonia (0.02%) as dielectric fluids and then employed electronic discharge machine to ionize them, with the arc-focused energy melting the surface of silver electrode rods. After the condensation of the dielectric fluid, silver nano-colloids were prepared under two conditions, named as Ag and Ag(NH3), respectively. The optical properties of the two samples were compared by a UV–Vis spectrum analyzer (UV–Vis), and the zeta potential was measured by Zetasizer. We then utilized a transmission electron microscope to observe the shape, size, and distribution of silver nanoparticles. The results showed that with the addition of NH3, the size of silver nanoparticles decreased, the concentration of nano-colloid increased, and the dispersive suspension of nano-colloid became better.

Keywords

Silver nanoparticle EDM Metals crystal lattice structure Optical property Ammonia Suspension 

Notes

Compliance with Ethical Standards

Conflict of interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    X. Li, G. Chen, X. Chen, G. Q. Lu, L. Wang, and Y. H. Mei (2012). Soldering Surf. Mt. Technol. 24, (2), 120.CrossRefGoogle Scholar
  2. 2.
    P. Thongnopkun, M. Jamkratoke, and S. Ekgasit (2012). Mater. Sci. Eng. A 556, 849.CrossRefGoogle Scholar
  3. 3.
    P. Coddet, C. Verdy, C. Coddet, and F. Debray (2015). Mater. Sci. Eng. A 637, 40.CrossRefGoogle Scholar
  4. 4.
    J. L. Zeng, Z. Cao, D. W. Yang, L. X. Sun, and L. Zhang (2010). J. Therm. Anal. Calorim 101, (1), 385.CrossRefGoogle Scholar
  5. 5.
    S. Lee, S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. Algadi, S. Al-Sayari, D. E. Kim, and T. Lee (2015). Adv. Funct. Mater. 25, (21), 3114.CrossRefGoogle Scholar
  6. 6.
    T. L. Chiu, J. H. Lee, Y. P. Hsiao, C. F. Lin, C. C. Chao, M. K. Leung, D. H. Wan, H. L. Chen, and H. C. Ho (2011). J. Phys. D: Appl. Phys. 44, (9), 095102.CrossRefGoogle Scholar
  7. 7.
    S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. List (2007). Adv. Funct. Mater. 17, (16), 3111.CrossRefGoogle Scholar
  8. 8.
    R. S. Sesuraj, T. L. Temple, and D. M. Bagnall (2013). Solar Energy Mater. Solar Cells 111, 23.CrossRefGoogle Scholar
  9. 9.
    M. Choi, K. H. Shin, and J. Jang (2010). J. Colloid Interface Sci. 341, (1), 83.CrossRefPubMedGoogle Scholar
  10. 10.
    V. P. Drachev, E. N. Khaliullin, W. Kim, F. Alzoubi, S. G. Rautian, V. P. Safonov, R. L. Armstrong, and V. M. Shalaev (2004). Phys. Rev. B 69, (3), 035318.CrossRefGoogle Scholar
  11. 11.
    S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. List (2007). Adv. Funct. Mater. 17, (16), 3111.CrossRefGoogle Scholar
  12. 12.
    L. Jing-ying, X. Xiu-li, and L. Wen-quan (2012). Waste Manag. 32, (6), 1209.CrossRefPubMedGoogle Scholar
  13. 13.
    C. H. Christensen, R. Z. Sørensen, T. Johannessen, U. J. Quaade, K. Honkala, T. D. Elmøe, R. Køhler, and J. K. Nørskov (2005). J. Mater. Chem. 15, (38), 4106.CrossRefGoogle Scholar
  14. 14.
    N. I. Zakharchenko (2002). Kinet. Catal. 43, (1), 95.CrossRefGoogle Scholar
  15. 15.
    K. H. Tseng, C. J. Chou, T. C. Liu, D. C. Tien, T. C. Wu, and L. Stobinski (2017). Adv. Mater. Sci. Eng., 1.Google Scholar
  16. 16.
    D. Andreescu, C. Eastman, K. Balantrapu, and D. V. Goia (2007). J. Mater. Res. 22, (9), 2488.CrossRefGoogle Scholar
  17. 17.
    K. H. Tseng, C. J. Chou, S. H. Shih, D. C. Tien, C. Y. Chang, and S. Leszek (2018). J. Cluster Sci., 1.Google Scholar
  18. 18.
    T. H. Hou, C. H. Su, and W. L. Liu (2007). Powder Technol. 173, (3), 153.CrossRefGoogle Scholar
  19. 19.
    T. R. Newton, S. N. Melkote, T. R. Watkins, R. M. Trejo, and L. Reister (2009). Mater. Sci. Eng. A 513, 208.CrossRefGoogle Scholar
  20. 20.
    P. Korhonen, M. Kulmala, A. Laaksonen, Y. Viisanen, R. McGraw, and J. H. Seinfeld (1999). J. Geophys. Res. Atmos. 104, (D21), 26349.CrossRefGoogle Scholar
  21. 21.
    M. Maeda, G. Nakagawa, and G. Biedermann (1983). J. Phys. Chem. 87, (1), 121.CrossRefGoogle Scholar
  22. 22.
    D. K. Bhui, H. Bar, P. Sarkar, G. P. Sahoo, S. P. De, and A. Misra (2009). J. Mol. Liq. 145, (1), 33.CrossRefGoogle Scholar
  23. 23.
    A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Ávalos-Borja, F. F. Castillón-Barraza, and A. Posada-Amarillas (2005). Phys. E Low-dimens. Syst. Nanostruct. 27, (1–2), 104.CrossRefGoogle Scholar
  24. 24.
    F. J. Arriagada and K. Osseo-Asare (1999). J. Colloid Interface Sci. 211, (2), 210.CrossRefPubMedGoogle Scholar
  25. 25.
    S. Honary and F. Zahir (2013). Trop. J. Pharm. Res. 12, (2), 255.Google Scholar
  26. 26.
    Y. Guo, L. Chen, F. Ma, S. Zhang, Y. Yang, X. Yuan, and Y. Guo (2011). J. Hazard. Mater. 189, (1–2), 614.CrossRefPubMedGoogle Scholar
  27. 27.
    B. Ajitha, Y. A. K. Reddy, and P. S. Reddy (2015). Powder Technol. 269, 110.CrossRefGoogle Scholar
  28. 28.
    E. R. Camargo (2011). J. Colloid Interface Sci. 360, (2), 355.CrossRefPubMedGoogle Scholar
  29. 29.
    A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V. K. Sharma, T. Nevěčná, and R. Zbořil (2006). J. Phys. Chem. B. 110, (33), 16248.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kuo-Hsiung Tseng
    • 1
  • Yu-Hung Lin
    • 1
  • Der-Chi Tien
    • 1
  • Tong-chi Wu
    • 1
  • Leszek Stobinski
    • 2
  1. 1.Department of Electrical EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Materials ChemistryWarsaw University of TechnologyWarsawPoland

Personalised recommendations