Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1161–1167 | Cite as

Bombyx mori Silk: An Eco-friendly Source to Produce Nanogold–Silk Bioconjugates and Gold Nanoparticles

  • V. Kiruthiga
  • A. Vinodhini
  • Akon Higuchi
  • K. Murugan
  • G. Singaravelu
Original Paper
  • 60 Downloads

Abstract

The immobilization of proteins on nano-colloidal substrates recently received increasing attention as it may improve the polymer properties and extend their application fields. The present investigation outlined that silkworm silk can represent a potential biopolymer useful to produce nanogold bioconjugates and gold nanoparticles. The gold nanoparticles and silk–nanogold bioconjugates were characterized by UV–vis spectroscopy, FTIR spectroscopy, scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis and transmission electron microscopy (HR-TEM). Overall, this study opens a one-pot novel route to produce Bombyx mori silk–nanogold bioconjugates and “green” gold nanomaterials using a cheap and non-toxic insect-borne natural biopolymer.

Keywords

Green nanosynthesis Nanogold bioconjugate Nanotechnology Silkworm 

Notes

Acknowledgements

The authors are grateful to the Department of Science and Technology (Nano Mission), New Delhi, Government of India for financial assistance. HR-TEM and HR-SEM assistance of SAIF, IITM, Chennai are gratefully acknowledged.

References

  1. 1.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1.CrossRefGoogle Scholar
  2. 2.
    S. S. Shankar, A. Ahmad, R. Pasrichaa, and M. Sastry (2003). J. Mater. Chem. 13, 1822.CrossRefGoogle Scholar
  3. 3.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3.CrossRefGoogle Scholar
  4. 4.
    G. Benelli, F. Maggi, R. Pavela, K. Murugan, M. Govindarajan, B. Vaseeharan, R. Petrelli, L. Cappellacci, S. Kumar, A. Hofer, M. R. Youssefi, A. A. Alarfaj, J. S. Hwang, and A. Higuchi (2017). Environ. Sci. Pollut. Res.  https://doi.org/10.1007/s11356-017-9752-4.CrossRefGoogle Scholar
  5. 5.
    R. Mehra and D. R. Winge (1991). J. Cell. Biochem. 45, 30–40.CrossRefPubMedGoogle Scholar
  6. 6.
    K. C. Bhainsa and S. F. D’Souza (2006). Colloids Surf. B Biointerfaces 47, 152.CrossRefGoogle Scholar
  7. 7.
    K. Kalimuthu, R. S. Babu, D. Venkataraman, M. Bilal, and S. Gurunathan (2008). Colloids Surf. B Biointerfaces 65, 150.CrossRefPubMedGoogle Scholar
  8. 8.
    G. Benelli (2016). Parasitol. Res. 115, 23.CrossRefPubMedGoogle Scholar
  9. 9.
    G. Benelli (2016). Enzyme Microb. Technol. 95, 58.CrossRefPubMedGoogle Scholar
  10. 10.
    J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen (2007). Nanotechnology 18, 105104.CrossRefGoogle Scholar
  11. 11.
    G. Singaravelu, J. Arockiamari, V. Ganesh Kumar, and K. Govindaraju (2007). Colloids Surf. B Biointerfaces 57, 97.CrossRefPubMedGoogle Scholar
  12. 12.
    K. Govindraju, S. Khaleel Basha, V. Ganesh Kumar, and G. Singaravelu (2008). J. Mater. Sci. 43, 5115.CrossRefGoogle Scholar
  13. 13.
    K. Govindaraju, V. Kiruthiga, V. Ganesh Kumar, and G. Singaravelu (2009). J. Nanosci. Nanotechnol. 9, 5497.CrossRefPubMedGoogle Scholar
  14. 14.
    M. F. Lengke, M. E. Fleet, and G. Southam (2006). Langmuir 22, 2780.CrossRefPubMedGoogle Scholar
  15. 15.
    B. I. Ipe, K. G. Thomas, S. Barazzouk, S. Hotchandani, and P. V. Kamat (2002). J. Phys. Chem. B 106, 18.CrossRefGoogle Scholar
  16. 16.
    G. Schmid Cluster and Colloids from Theory to Applications (Wiley-VCH, New York, 1994).CrossRefGoogle Scholar
  17. 17.
    S. Khaleel Basha, K. Govindaraju, R. Manikandan, J. S. Ahn, E. Y. Bae, and G. Singaravelu (2010). Colloids Surf. B Biointerfaces 75, 405.CrossRefPubMedGoogle Scholar
  18. 18.
    V. Pillai, P. Kumar, and M. S. Multani (1993). Colloids Surf. B Biointerfaces 80, 69.CrossRefGoogle Scholar
  19. 19.
    Y. Sun and Y. Xia (2002). Science 298, 2176.CrossRefPubMedGoogle Scholar
  20. 20.
    Y. C. Kim, N. C. Park, J. S. Shin, S. R. Lee, Y. J. Lee, and D. Moon (2003). J. Catal. Today 87, 153.CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, H. Ma, K. Zhang, S. Zhang, and J. Wang (2009). Electrochim. Acta 54, 2385.CrossRefGoogle Scholar
  22. 22.
    C. M. Niemeyer and B. Ceyhan (2001). Angew. Chem. Int. Ed. Engl. 40, 3685.CrossRefPubMedGoogle Scholar
  23. 23.
    C. W. Waran and S. Nie (1998). Science 281, 2016.CrossRefGoogle Scholar
  24. 24.
    D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West (2004). Cancer Lett. 209, 171.CrossRefPubMedGoogle Scholar
  25. 25.
    E. Sachlas, D. Gotora, and J. T. Czernuszka (2006). Tissue Eng. 12, 2479.CrossRefGoogle Scholar
  26. 26.
    K. Murugan, G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, D. Dinesh, M. Nicoletti, J. S. Hwang, U. Suresh, and P. Madhiyazhagan (2015). Exp. Parasitol. 153, 129.CrossRefPubMedGoogle Scholar
  27. 27.
    J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, D. Dinesh, P. Mahesh Kumar, B. Chandramohan, U. Suresh, R. Rajaganesh, M. Saleh AlSalhi, S. Devanesan, M. Nicoletti, A. Canale, and G. Benelli (2016). Environ. Sci. Pollut. Res. 23, 7543.CrossRefGoogle Scholar
  28. 28.
    A. P. Alivisatos (1996). Science 271, 933.CrossRefGoogle Scholar
  29. 29.
    D. C. Schnitzler, M. S. Meruvia, I. A. Hummelgen, and A. I. G. Zarbin (2003). Chem. Mater. 15, 4658.CrossRefGoogle Scholar
  30. 30.
    Z. H. Liu, X. J. Yang, Y. Makita, and O. Kenta (2002). Chem. Mater. 14, 4800.CrossRefGoogle Scholar
  31. 31.
    B. Boury and R. J. P. Corriu (2000). Adv. Mater. 12, 989.CrossRefGoogle Scholar
  32. 32.
    S. Bruzaud and G. Levesque (2002). Chem. Mater. 14, 2421.CrossRefGoogle Scholar
  33. 33.
    H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan (2004). Biomacromolecules 5, 711.CrossRefPubMedGoogle Scholar
  34. 34.
    X. X. Feng, L. L. Zhang, J. Y. Chen, Y. H. Guo, H. P. Zhang, and C. I. Jia (2007). Int. J. Biol. Macromol. 40, 105.CrossRefPubMedGoogle Scholar
  35. 35.
    M. Van de Wreet, P. I. Haris, W. E. Hennink, and D. J. A. Crommelin (2001). Anal. Biochem. 297, 160.CrossRefGoogle Scholar
  36. 36.
    D. V. Leff, L. Brandt, and J. R. Heath (1996). Langmuir 12, 4723.CrossRefGoogle Scholar
  37. 37.
    J. W. Jeffrey Methods in Crystallography (Academic press, New York, 1971).Google Scholar
  38. 38.
    P. Mulvaney (1996). Langmuir 12, 788.CrossRefGoogle Scholar
  39. 39.
    C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed (2005). Chem. Rev. 105, 1025.CrossRefPubMedGoogle Scholar
  40. 40.
    P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, and E. W. Kaler (2000). J. Am. Chem. Soc. 122, 9554.CrossRefGoogle Scholar
  41. 41.
    D. Philip (2009). Spectrochim. Acta A 73, 650.CrossRefGoogle Scholar
  42. 42.
    G. W. Jeong, Y. W. Lee, M. Kim, and S. W. Han (2009). J. Colloid Interface Sci. 329, 97.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. Kiruthiga
    • 1
  • A. Vinodhini
    • 1
  • Akon Higuchi
    • 2
    • 3
  • K. Murugan
    • 4
  • G. Singaravelu
    • 4
  1. 1.Department of ZoologyD.K.M. College for WomenVelloreIndia
  2. 2.Department of Chemical and Materials EngineeringNational Central UniversityJhongli, TaoyuanTaiwan
  3. 3.Nano Medical Engineering LaboratoryRIKENWakoJapan
  4. 4.Nanoscience Division, Department of ZoologyThiruvalluvar UniversityVelloreIndia

Personalised recommendations