Journal of Cluster Science

, Volume 29, Issue 6, pp 1089–1098 | Cite as

MnO2 Nanoparticles and Carbon Nanofibers Nanocomposites with High Sensing Performance Toward Glucose

  • Li ZhangEmail author
  • Qun Chen
  • Xinru Han
  • Qian Zhang
Original Paper


By combining the advantages of manganese dioxide nanoparticles (MnO2 NPs) and carbon nanofibers (CNFs), a biosensing electrode surface as a high-performance enzyme biosensor is designed in this work. MnO2 NPs and CNFs nanocomposites (MnO2–CNFs) were prepared by using a simple hydrothermal method and then were characterized by scanning electron microscopy, powder X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive spectrometry and electrochemisty. The results showed that MnO2 NPs are uniformly attached to the surface of CNFs. Meanwhile, the MnO2–CNFs nanocomposites as a supporting matrix can provide an efficient and advantageous platform for electrochemical sensing applications. On the basis of the improved sensitivity of MnO2–CNFs modified electrode toward H2O2 at low overpotential, a MnO2–CNFs based glucose biosensor was fabricated by monitoring H2O2 produced by an enzymatic reaction between glucose oxidase and glucose. The constructed biosensor exhibited a linear calibration graph for glucose in a concentration range of 0.08–4.6 mM and a low detection limit of 0.015 mM. In addition, the biosensor showed other excellent characteristics, such as high sensitivity and selectivity, short response time, and the relative low apparent Michaelis–Menten constant. Analysis of human urine spiked with glucose at different concentration levels yielded recoveries between 101.0 and 104.8%.


MnO2–CNFs nanocomposites Hydrogen peroxide Glucose oxidase Glucose 



The authors thank the National Natural Science Foundation of China (21001004), the Natural Science Foundation of the Anhui Higher Education Institutions (Grant No. KJ2016A277), the Innovation Funds of Anhui Normal University (Grant 741606), Ph.D. Research Startup Funds of Anhui Normal University (2018XJJ-751862), the Key Laboratory of Functional Molecular Solids, Ministry of Education and Anhui Laboratory of Molecule-Based Materials (16005) and the Training Programs of Innovation and Entrepreneurship for Undergraduates (201610370471).

Supplementary material

10876_2018_1421_MOESM1_ESM.doc (500 kb)
Supplementary material 1 (DOC 500 kb)


  1. 1.
    Y. Liu, M. K. Wang, F. Zhao, Z. A. Xu, and S. J. Dong (2005). Biosens. Bioelectron. 21, 984.CrossRefPubMedGoogle Scholar
  2. 2.
    A. Chalupniak, A. Merkoci, and A. C. S. Appl (2017). Mater. Interfaces 9, 44766.CrossRefGoogle Scholar
  3. 3.
    V. Vamvakaki, K. Tsagaraki, and N. Chaniotakis (2006). Anal. Chem. 78, 5538.CrossRefPubMedGoogle Scholar
  4. 4.
    L. Wu, X. J. Zhang, and H. X. Ju (2007). Anal. Chem. 79, 453.CrossRefPubMedGoogle Scholar
  5. 5.
    C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu (2009). Anal. Chem. 81, 2378.CrossRefPubMedGoogle Scholar
  6. 6.
    W. Song, D. W. Li, Y. T. Li, Y. Li, and Y. T. Long (2011). Biosens. Bioelectron. 26, 3181.CrossRefPubMedGoogle Scholar
  7. 7.
    A. Arvinte, F. Valentini, A. Radoi, F. Arduini, E. Tamburri, L. Rotariu, G. Palleschi, and C. Bala (2007). Electroanalysis 19, 1455.CrossRefGoogle Scholar
  8. 8.
    Y. Liu, H. Q. Hou, and T. Y. You (2008). Elactroanalysis 20, 1708.CrossRefGoogle Scholar
  9. 9.
    L. Wu, X. J. Zhang, and H. X. Ju (2007). Analyst 132, 406.CrossRefPubMedGoogle Scholar
  10. 10.
    V. Vamvakaki and N. A. Chaniotakis (2007). Sens. Actuators B 126, 193.CrossRefGoogle Scholar
  11. 11.
    Z. Z. Li, X. L. Cui, J. S. Zheng, Q. F. Wang, and Y. H. Lin (2007). Anal. Chim. Acta 597, 238.CrossRefPubMedGoogle Scholar
  12. 12.
    Y. Liu, J. S. Huang, H. Q. Hou, and T. Y. You (2008). Electrochem. Commun. 10, 1431.CrossRefGoogle Scholar
  13. 13.
    L. Wu, X. J. Zhang, and H. X. Ju (2007). Biosens. Bioelectron. 23, 479.CrossRefPubMedGoogle Scholar
  14. 14.
    X. B. Lu, J. H. Zhou, W. Lu, Q. Liu, and J. H. Li (2008). Biosens. Bioelectron. 23, 1236.CrossRefPubMedGoogle Scholar
  15. 15.
    C. Hao, L. Ding, X. J. Zhang, and H. X. Ju (2007). Anal. Chem. 79, 4442.CrossRefPubMedGoogle Scholar
  16. 16.
    J. S. Huang, D. W. Wang, H. Q. Hou, and T. Y. You (2008). Adv. Funct. Mater. 18, 441.CrossRefGoogle Scholar
  17. 17.
    V. Vamvakaki, M. Hatzimarinaki, and N. A. Chaniotakis (2008). Anal. Chem. 80, 5970.CrossRefPubMedGoogle Scholar
  18. 18.
    Q. Guo, D. Liu, X. Zhang, L. Li, H. Hou, O. Niwa, and T. Y. You (2014). Anal. Chem. 86, 5898.CrossRefPubMedGoogle Scholar
  19. 19.
    V. E. Henrich and P. A. Cox, Cambridge University Press: Cambridge, UK, 1994.Google Scholar
  20. 20.
    S. J. Yao, S. Yuan, and J. H. Xu (2006). Y. wang, J. L. Luo and S. S. Hu. Appl. Clay Sci. 33, 35.CrossRefGoogle Scholar
  21. 21.
    Y. H. Lin, X. L. Cui, and L. L. Yu (2005). Electrochem. Commun. 7, 166.CrossRefGoogle Scholar
  22. 22.
    A. J. Wang, P. P. Zhang, Y. F. Li, J. J. Feng, W. J. Dong, and X. Y. Liu (2011). Microchim. Acta 175, 31.CrossRefGoogle Scholar
  23. 23.
    Y. H. Bai, Y. Du, J. J. Xu, and H. Y. Chen (2007). Electrochem. Commun. 9, 2611.CrossRefGoogle Scholar
  24. 24.
    L. Han, C. Shao, B. Liang, A. Liu, and A. C. S. Appl (2016). Mater. Interfaces 8, 13768.CrossRefGoogle Scholar
  25. 25.
    E. A. Dontsova, Y. S. Zeifman, I. A. Budashov, A. V. Eremenko, S. L. Kalnov, and I. N. Kurochkin (2011). Sens. Actuators B Chem. 159, 261.CrossRefGoogle Scholar
  26. 26.
    B. Xu, M. L. Ye, Y. X. Yu, and W. D. Zhang (2010). Anal. Chim. Acta 674, 20.CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Li, J. Zhang, H. Zhu, F. Yang, and X. Yang (2010). Electrochim. Acta 55, 5123.CrossRefGoogle Scholar
  28. 28.
    A. J. Paleo, P. Staiti, A. Brigandì, F. N. Ferreira, A. M. Rocha, and F. Lufrano (2018). Energy Storage Mater. 12, 204.CrossRefGoogle Scholar
  29. 29.
    Y. Yang, S. Lee, D. E. Brown, H. Zhao, X. Li, D. Jiang, S. Hao, Y. Zhao, D. Cong, X. Zhang, and Y. Ren (2016). Electrochim. Acta 211, 524.CrossRefGoogle Scholar
  30. 30.
    Z. Zeng, W. Zhang, Y. Liu, P. Lu, and J. Wei (2017). Electrochim. Acta 256, 232.CrossRefGoogle Scholar
  31. 31.
    H. Yang, Y. Yan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu, and D. Zhao (2004). J. Phys. Chem. B 108, 17320.CrossRefGoogle Scholar
  32. 32.
    K. Gong, P. Yu, L. Su, S. Xiong, and L. Mao (1882). J. Phys. Chem. C 2007, 111.Google Scholar
  33. 33.
    F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, and P. Shen (2006). Inorg. Chem. 45, 2038.CrossRefPubMedGoogle Scholar
  34. 34.
    W. Tian, H. Yang, X. Fan, and X. Zhang (2011). J. Hazard. Mater. 188, 105.CrossRefPubMedGoogle Scholar
  35. 35.
    M. Sun, B. Lan, T. Lin, G. Cheng, F. Ye, L. Yu, X. Cheng, and X. Zheng (2013). CrystEngComm 15, 7010.CrossRefGoogle Scholar
  36. 36.
    M. Zhi, A. Manivannan, F. Meng F, N. Wu, J Power Sources, 2012, 208, 345.Google Scholar
  37. 37.
    S. Kubota, H. Nishikiori, N. Tanaka, M. Endo, and T. Fujii (2005). J. Phys. Chem. B 109, 23170.CrossRefPubMedGoogle Scholar
  38. 38.
    Q. Bao, S. Bao, C. M. Li, X. Qi, C. Pan, J. Zang, Z. Lu, Y. Li, D. Y. Tang, S. Zhang, and K. Lian (2008). J. Phys. Chem. C 112, 3612.CrossRefGoogle Scholar
  39. 39.
    S. Jana, S. Basu, S. Pande, and S. Kumar (2007). Ghosh and T. Pal. J. Phys. Chem. C 111, 16272.CrossRefGoogle Scholar
  40. 40.
    J. Zhu, J. He, and A. C. S. Appl (2012). Mater. Interfaces 4, 1770.CrossRefGoogle Scholar
  41. 41.
    M. V. Ananth, S. Pethkar, and K. Dakshinamurthi (1998). J. Power Sources 75, 278.CrossRefGoogle Scholar
  42. 42.
    W. Zhang, Z. Zeng, and J. Wei (2017). J. Phys. Chem. C 121, 18635.CrossRefGoogle Scholar
  43. 43.
    Z. Zeng, Y. Liu, W. Zhang, H. Chevva, and J. Wei (2017). J. Power Sources 358, 22.CrossRefGoogle Scholar
  44. 44.
    Y. F. Tang, B. L. Allen, D. R. Kauffman, and A. Star (2009). J. Am. Chem. Soc. 131, 13200.CrossRefPubMedGoogle Scholar
  45. 45.
    S. B. Hocevar and B. Ogorevc (2004). K. Schachl amd K. Kalcher. Electroanalysis 16, 1711.CrossRefGoogle Scholar
  46. 46.
    X. Xu, S. Jiang, Z. Hu, and S. Liu (2010). ACS Nano 4, 4292.CrossRefPubMedGoogle Scholar
  47. 47.
    L. Zhang, S. Yuan, L. Yang, Z. Fang, and G. Zhao (2013). Microchim. Acta 180, 627.CrossRefGoogle Scholar
  48. 48.
    R. A. Kamin and G. S. Wilson (1980). Anal. Chem. 52, 1198.CrossRefGoogle Scholar
  49. 49.
    G. B. Xu, X. Q. Liu, L. H. Shi, W. X. Niu, and H. J. Li (1887). Biosens. Bioelectron. 2008, 23.Google Scholar
  50. 50.
    T. H. Wang, C. C. Li, Y. L. Liu, L. M. Li, Z. F. Du, S. J. Xu, M. Zhang, and X. M. Yin (2008). Talanta 77, 455.CrossRefPubMedGoogle Scholar
  51. 51.
    B. A. Gregg and A. Heller (1990). Anal. Chem. 62, 258.CrossRefPubMedGoogle Scholar
  52. 52.
    B. Akkaya, B. Çakiroğlu, and M. Özacar (2018). ACS Sustain. Chem. Eng. 6, 3805.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based MaterialsAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations