Journal of Cluster Science

, Volume 29, Issue 6, pp 933–941 | Cite as

Nanotherapeutic Anti-influenza Solutions: Current Knowledge and Future Challenges

  • Enkhtaivan Gansukh
  • Vimala Anthonydhason
  • Somang Jung
  • Doo Hwan Kim
  • Manikandan Muthu
  • Judy GopalEmail author
  • Sechul ChunEmail author
Review Paper


Nanotechnology has impacted every aspect of human life and the environment. The raising concern against influenza outbreaks is an ongoing issue. With the current drugs and natural remedies, some amount of resolution has been reached. Yet, nothing conclusive has been achieved. With every resource tapped, it is now time to combine strategies. This review highlights the low enthusiasm in this area, where not much has been probed into employing nanomaterials into influenza research. The achievements made through the intervention of nanotechnology into anti influenza research, has been surveyed in this review. Except for a few, not much progress was evidenced. Although significant progress has been achieved with nano inputs, yet nothing much has been done in this direction. This review emphasizes the need to combine strategies and find new remedies against influenza virus using nano platforms. New directions and future perspectives for accessing the nano inputs for combating the influenza issues have been discussed.


Influenza Antiviral activity Nanotechnology Influenza Resistance Inhibition 


Compliance with Ethical Standards

Conflict of interest

The authors declares that there are no conflict of interests.


  1. 1.
    D. Lembo and R. Cavalli (2010). Antivir. Chem. Chemother. 21, 53.PubMedCrossRefGoogle Scholar
  2. 2.
    A. Saxena, R. M. Tripathi, and R. P. Singh (2010). Dig. J. Nanomater. Biostruct. 5, 427.Google Scholar
  3. 3.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1.CrossRefGoogle Scholar
  4. 4.
    G. Benelli (2016). Enzyme Microb. Technol. 95, 58.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    R. Rajan, K. Chandran, S. L. Harper, S. I. Yun, and P. T. Kalaichelvan (2015). Ind. Crops Prod. 70, 356.CrossRefGoogle Scholar
  6. 6.
    G. Benelli (2017). Acta Trop. 178, 73.PubMedCrossRefGoogle Scholar
  7. 7.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3.CrossRefGoogle Scholar
  8. 8.
    G. Benelli, F. Maggi, D. Romano, C. Stefanini, B. Vaseeharan, S. Kumar, A. Higuchi, A. A. Alarfaj, H. Mehlhorn, and A. Canale (2017). Ticks Tick Borne Dis. 8, 821.PubMedCrossRefGoogle Scholar
  9. 9.
    M. Govindarajan and G. Benelli (2017). J. Clust. Sci. 28, 15. Scholar
  10. 10.
    G. Benelli and M. Govindarajan (2017). J. Clust. Sci. 28, 287. Scholar
  11. 11.
    G. Enkhtaivan, K. M. Maria John, M. Pandurangan, J. H. Hur, A. S. Leutou, and D. H. Kim (2016). Saudi J. Biol. Sci. 24, 1646.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    G. Enkhtaivan, P. Muthuraman, and D. H. Kim (2017). J. Mol. Recognit. 30, e2616.CrossRefGoogle Scholar
  13. 13.
    E. Gansukh, Z. Kazibwe, M. Pandurangan, G. Judy, and D. H. Kim (2016). Phytomedicine 23, 958.PubMedCrossRefGoogle Scholar
  14. 14.
    N. Nakajima, N. V. Tin, Y. Sato, H. N. Thach, H. Katano, and P. H. Diep (2013). Mod. Pathol. 26, 357.PubMedCrossRefGoogle Scholar
  15. 15.
    Q. Li, L. Zhou, M. H. Zhou, Z. P. Chen, F. R. Li, and H. Y. Wu (2014). N. Engl. J. Med. 370, 520.PubMedCrossRefGoogle Scholar
  16. 16.
    T. M. Uyeki (2008). Respirology 13, S2.PubMedCrossRefGoogle Scholar
  17. 17.
    E. Gansukh, M. Muthu, D. Paul, G. Ethiraj, S. Chun, and J. Gopal (2017). Rev. Med. Virol. 27, e1930.CrossRefGoogle Scholar
  18. 18.
    J. L. McKimm-Breschkin (2013). Influenza Other Respir. Viruses 1, 25.CrossRefGoogle Scholar
  19. 19.
    H. Leonov, P. Astrahan, M. Krugliak, and I. T. Arkin (2011). J. Am. Chem. Soc. 133, 9903.PubMedCrossRefGoogle Scholar
  20. 20.
    T. G. Sheu, A. M. Fry, R. J. Garten, V. M. Deyde, T. Shwe, and L. Bullion (2008). J. Infect. Dis. 203, 13.CrossRefGoogle Scholar
  21. 21.
    N. Spanakis, V. Pitiriga, V. Gennimata, and A. Tsakris (2014). Expert Rev. Anti Infect. 12, 1325.CrossRefGoogle Scholar
  22. 22.
    T. Komeda, S. Ishii, Y. Itoh, Y. Ariyasu, M. Sanekata, and T. Yoshikawa (2015). J. Infect. Chemother. 21, 194.PubMedCrossRefGoogle Scholar
  23. 23.
    T. Komeda, S. Ishii, Y. Itoh, Y. Ariyasu, M. Sanekata, and T. Yoshikawa. J. Infect. Chemother. 20, 689.Google Scholar
  24. 24.
    J. Lynch and E. Walsh (2007). Semin. Respir. Crit. Care Med. 28, 144.PubMedCrossRefGoogle Scholar
  25. 25.
    M. P. Clark, M. W. Ledeboer, I. Davies, R. A. Byrn, S. M. Jones, and E. Perola (2014). J. Med. Chem. 57, 6668.PubMedCrossRefGoogle Scholar
  26. 26.
    M. P. Clark (2014). Abstr. Pap. Am. Chem. 2014, 248.Google Scholar
  27. 27.
    N. R. Hegde, S. V. Kaveri, and J. Bayry (2011). Drug Discov. Today 16, 1061.PubMedCrossRefGoogle Scholar
  28. 28.
    D. G. Koutsonanos, M. del Pilar Martin, V. G. Zarnitsyn, S. P. Sullivan, R. W. Compans, and M. R. Prausnitz (2009). PloS One 4, e4773.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    M. A. Miller and E. Pisani (1999). Bull. World Health Organ. 77, 808.PubMedPubMedCentralGoogle Scholar
  30. 30.
    G. Enkhtaivan, K. M. Maria John, M. Ayyanar, T. Sekar, K. J. Jin, and D. H. Kim (2015). Saudi J. Biol. Sci. 22, 532.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    J. Treanor (2004). N. Engl. J. Med. 350, 218.PubMedCrossRefGoogle Scholar
  32. 32.
    J. Yang, S. Liu, L. Du, and S. Jiang (2016). Rev. Med. Virol. 26, 242.PubMedCrossRefGoogle Scholar
  33. 33.
    J. M. Luczo, J. Stambas, P. A. Durr, W. P. Michalski, and J. Bingham (2015). Rev. Med. Virol. 25, 406.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    B. Michiels, K. Van Puyenbroeck, V. Verhoeven, E. Vermeire, and S. Coenen. PLoS One. 8, e60348.Google Scholar
  35. 35.
    A. J. Wailoo, A. J. Sutton, N. J. Cooper, D. A. Turner, K. R. Abrams, and A. Brennan (2008). Value Health 11, 160.PubMedCrossRefGoogle Scholar
  36. 36.
    A. Moscona (2009). N. Engl. J. Med. 360, 953.PubMedCrossRefGoogle Scholar
  37. 37.
    K. M. Maria John, G. Enkhtaivan, M. Ayyanar, K. Jin, J. B. Yeon, and D. H. Kim (2015). Saudi J. Biol. Sci. 22, 191.PubMedCrossRefGoogle Scholar
  38. 38.
    D. B. Mendel and R. W. Sidwell (1998). Drug Resist. Updates 1, 184.CrossRefGoogle Scholar
  39. 39.
    S. D. Cady, K. Schmidt-Rohr, J. Wang, C. S. Soto, W. F. Degrado, and M. Hong (2010). Nature 463, 689.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    L. H. Pinto and R. A. Lamb (2006). J. Biol. Chem. 281, 8997.PubMedCrossRefGoogle Scholar
  41. 41.
    I. Stephenson and K. G. Nicholson (1999). J. Antimicrob. Chemother. 44, 6.PubMedCrossRefGoogle Scholar
  42. 42.
    Centers for Disease C, Prevention (2006). MMWR Morb. Mortal. Wkly. Rep. 55, 44.Google Scholar
  43. 43.
    R. A. Bright, M. J. Medina, X. Xu, G. Perez-Oronoz, T. R. Wallis, and X. M. Davis (2005). Lancet 366, 1175.PubMedCrossRefGoogle Scholar
  44. 44.
    N. A. Ilyushina, E. A. Govorkova, and R. G. Webster (2005). Virology 341, 102.PubMedCrossRefGoogle Scholar
  45. 45.
    J. Parry (2005). BMJ 331, 10.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    L. M. Farigliano, S. A. Paz, E. P. M. Leiva, and M. A. Villarreal (2017). J. Chem. Theory Comput. 13, 3874.PubMedCrossRefGoogle Scholar
  47. 47.
    M. Fatima, N. U. Zaidi, D. Amraiz, and F. Afzal (2016). J. Microbiol. Biotechnol. 26, 151.PubMedCrossRefGoogle Scholar
  48. 48.
    H. L. Yen, J. L. McKimm-Breschkin, K. T. Choy, D. D. Wong, P. P. Cheung, and J. Zhou (2013). MBio 2013, 4.Google Scholar
  49. 49.
    A. Jacob, R. Sood, Kh V Chanu, S. Bhatia, R. Khandia, and A. K. Pateriya (2016). Microb. Pathog. 91, 35.PubMedCrossRefGoogle Scholar
  50. 50.
    T. Ziegler, M. L. Hemphill, M. L. Ziegler, G. Perez-Oronoz, A. I. Klimov, and A. W. Hampson (1999). J. Infect. Dis. 180, 935.PubMedCrossRefGoogle Scholar
  51. 51.
    M. Nykvist, A. Gillman, H. Soderstrom Lindstrom, C. Tang, G. Fedorova, and A. Lundkvist (2017). J. Gen. Virol. 98, 2937.CrossRefGoogle Scholar
  52. 52.
    N. Khandelwal, G. Kaur, N. Kumar, and A. Tiwari (2014). Dig. J. Nanomater. Biostruct. 9, 175.Google Scholar
  53. 53.
    H. Xiao and Y. Zhang (2012). Sci. China Life Sci. 55, 841.PubMedCrossRefGoogle Scholar
  54. 54.
    S. Tong, T. J. Cradick, Y. Ma, Z. Dai, and G. Bao (2012). Sci. China Life Sci. 55, 843.PubMedCrossRefGoogle Scholar
  55. 55.
    X. Nie and C. Chen (2012). Sci. China Life Sci. 55, 872.PubMedCrossRefGoogle Scholar
  56. 56.
    Z. Zhang, L. Wang, J. Wang, Z. Jiang, X. Li, and Z. Hu (2012). Adv. Mater. 24, 1418.PubMedCrossRefGoogle Scholar
  57. 57.
    A. H. Chi, K. Clayton, T. J. Burrow, R. Lewis, D. Luciano, and F. Alexis (2013). Ther. Deliv. 4, 77.PubMedCrossRefGoogle Scholar
  58. 58.
    E. Meng and T. Hoang. Ther. Deliv. 3, 1457.Google Scholar
  59. 59.
    K. Gulati, M. S. Aw, D. Findlay, and D. Losic (2012). Ther. Deliv. 3, 857.PubMedCrossRefGoogle Scholar
  60. 60.
    L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, and E. S. Day (2011). Small 7, 169.PubMedCrossRefGoogle Scholar
  61. 61.
    M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, and T. Rojo (2012). Trends Biotechnol. 30, 499.PubMedCrossRefGoogle Scholar
  62. 62.
    P. L. Kashyap, S. Kumar, A. K. Srivastava, and A. K. Sharma (2013). World J. Microbiol. Biotechnol. 29, 191.PubMedCrossRefGoogle Scholar
  63. 63.
    S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, and M. Galdiero (2011). Molecules 16, 8894.PubMedCrossRefGoogle Scholar
  64. 64.
    P. Swain, S. K. Nayak, A. Sasmal, T. Behera, S. K. Barik, and S. K. Swain (2014). World J. Microbiol. Biotechnol. 30, 2491.PubMedCrossRefGoogle Scholar
  65. 65.
    V. Patel, D. Berthold, P. Puranik, and M. Gantar (2015). Biotechnol. Rep. (Amst) 5, 112.CrossRefGoogle Scholar
  66. 66.
    T. T. Duong, T. S. Le, T. T. H. Tran, T. K. Nguyen, C. T. Ho, and T. H. Dao (2016). Adv. Nat. Sci. Nanosci. 7, 035018.CrossRefGoogle Scholar
  67. 67.
    S. Chun, M. Muthu, E. Gansukh, P. Thalappil, and J. Gopal (2016). Sci. Rep. 6, 35586.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    J. Gopal, M. Muthu and S. C. Chun. RSC. Adv. 5, 48391.Google Scholar
  69. 69.
    A. S. Gambaryan, A. B. Tuzikov, A. A. Chinarev, L. R. Juneja, N. V. Bovin, and M. N. Matrosovich (2002). Antiviral Res. 55, 201.PubMedCrossRefGoogle Scholar
  70. 70.
    L. M. Bimbo, O. V. Denisova, E. Makila, M. Kaasalainen, J. K. De Brabander, and J. Hirvonen (2013). ACS. Nano. 7, 6884.PubMedCrossRefGoogle Scholar
  71. 71.
    H. H. Lara, N. V. Ayala-Nunez, L. Ixtepan-Turrent, and C. Rodriguez-Padilla (2010). J. Nanobiotechnol. 8, 1.CrossRefGoogle Scholar
  72. 72.
    J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, and H. H. Lara (2005). J. Nanobiotechnol. 3, 6.CrossRefGoogle Scholar
  73. 73.
    S. J. Kwon, D. H. Na, J. H. Kwak, M. Douaisi, F. Zhang, and E. J. Park (2017). Nat. Nanotechnol. 12, 48.PubMedCrossRefGoogle Scholar
  74. 74.
    B. M. Coates, K. L. Staricha, K. M. Wiese, and K. M. Ridge (2015). JAMA Pediatr. 169, 956.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    A. Iwasaki and P. S. Pillai (2014). Nat. Rev. Immunol. 14, 315.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    K. Zhang, W. W. Xu, Z. Zhang, J. Liu, J. Li, and L. Sun (2017). Oncotarget 8, 30422.PubMedPubMedCentralGoogle Scholar
  77. 77.
    D. P. Patterson, A. Rynda-Apple, A. L. Harmsen, A. G. Harmsen, and T. Douglas (2013). ACS Nano. 7, 3036.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    S. Dhakal, J. Goodman, K. Bondra, Y. S. Lakshmanappa, J. Hiremath, and D. L. Shyu (2017). Vaccine. 35, 1124.PubMedCrossRefGoogle Scholar
  79. 79.
    Correction for Chahal (2016). Proce. Natl. Acad. Sci. 113, E5250-E.CrossRefGoogle Scholar
  80. 80.
    W. Tao, K. S. Ziemer, and H. S. Gill (2014). Nanomedicine 9, 237.PubMedCrossRefGoogle Scholar
  81. 81.
    M. A. Babizhayev (2013). Recent Pat. Drug Deliv. Formul. 7, 39.PubMedCrossRefGoogle Scholar
  82. 82.
    A. M. Fan and G. Alexeeff (2010). J. Nanosci. Nanotechnol. 10, 8646.PubMedCrossRefGoogle Scholar
  83. 83.
    K. Sundberg, V. Champagne, B. McNally, D. Helfritch, and R. Sisson (2015). J. Biotechnol. Biomater. 5, 205.Google Scholar
  84. 84.
    A. Mohamed and M. M. Xing (2012). Int. J. Burns Trauma 2, 29.PubMedPubMedCentralGoogle Scholar
  85. 85.
    B. Peretz (2005). Refuat. Hapeh. Vehashinayim. 22, 88.Google Scholar
  86. 86.
    C. Schmidt and J. Storsberg (2015). Biomedicine 3, 203.CrossRefGoogle Scholar
  87. 87.
    R. F. Service (2005). Science 310, 1609.CrossRefGoogle Scholar
  88. 88.
    N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, and R. Hazan (2015). Evid. Based Complement Altern. Med. 2015, 246012.CrossRefGoogle Scholar
  89. 89.
    A. S. Brady-Estevez, S. Kang, and M. Elimelech (2008). Small. 4, 481.PubMedCrossRefGoogle Scholar
  90. 90.
    S. Brady-Estevez, T. H. Nguyen, L. Gutierrez, and M. Elimelech. Water Res. 44, 3773.Google Scholar
  91. 91.
    D. H. Cheung, T. K. Tsang, V. J. Fang, J. Xu, K. H. Chan, and D. K. Ip (2015). J. Infect. Dis. 212, 391.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    G. Neumann and Y. Kawaoka (2015). Virology 479–480, 234.PubMedCrossRefGoogle Scholar
  93. 93.
    L. Loomba and T. Scarabelli (2013). Ther. Deliv. 4, 859.PubMedCrossRefGoogle Scholar
  94. 94.
    L. Loomba and T. Scarabelli (2013). Ther. Deliv. 4, 1179.PubMedCrossRefGoogle Scholar
  95. 95.
    G. Cirillo, O. Vittorio, S. Hampel, F. Iemma, P. Parchi, and M. Cecchini (2013). Eur. J. Pharm. Sci. 49, 359.PubMedCrossRefGoogle Scholar
  96. 96.
    K. W. Ren, Y. H. Li, G. Wu, J. Z. Ren, H. B. Lu, and Z. M. Li (2017). Int. J. Oncol. 50, 1299.PubMedCrossRefGoogle Scholar
  97. 97.
    L. Liu, Q. Ye, M. Lu, Y. C. Lo, Y. H. Hsu, and M. C. Wei (2015). Sci. Rep. 5, 10881.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    A. V. Anand David, R. Arulmoli, and S. Parasuraman (2016). Pharmacogn. Rev. 10, 84.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    S. W. Yoon, R. J. Webby, and R. G. Webster (2014). Curr. Top. Microbiol. Immunol. 385, 359.PubMedGoogle Scholar
  100. 100.
    H. Satoh (2014). J. Intercult. Ethnopharmacol. 3, 196.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    G. Enkhtaivan, P. Muthuraman, D. H. Kim, and B. Mistry (2017). Bioorg. Med. Chem. 25, 5185.PubMedCrossRefGoogle Scholar
  102. 102.
    M. Veverka, J. Gallovič, E. Švajdlenka, E. Veverková, N. Prónayová, and I. Miláčková (2013). Chem. Pap. 67, 76.CrossRefGoogle Scholar
  103. 103.
    M. Thapa, Y. Kim, J. Desper, K. O. Chang, and D. H. Hua (2012). Bioorg. Med. Chem. Lett. 22, 353.PubMedCrossRefGoogle Scholar
  104. 104.
    E. K. Lim, D. A. Ashford, B. Hou, R. G. Jackson, and D. J. Bowles (2004). Biotechnol. Bioeng. 87, 623.PubMedCrossRefGoogle Scholar
  105. 105.
    J. Roepke and G. G. Bozzo (2013). ChemBioChem 14, 2418.PubMedCrossRefGoogle Scholar
  106. 106.
    S. Das and J. P. N. Rosazza (2006). J. Natl. Prod. 69, 499.CrossRefGoogle Scholar
  107. 107.
    K. Men, X. Duan, X. W. Wei, M. L. Gou, M. J. Huang, and L. J. Chen (2014). Anticancer Agents Med. Chem. 14, 826.PubMedCrossRefGoogle Scholar
  108. 108.
    L. Singh, et al. (2017). Ther. Adv. Infect. Dis. 4, 105.PubMedPubMedCentralGoogle Scholar
  109. 109.
    S. Barik (2012). BMC Med. 10, 104. [PMC free article].Google Scholar
  110. 110.
    N. Shafagati, A. Patanarut, A. Luchini, et al. (2014). Pathog. Dis. 71, 164.PubMedCrossRefGoogle Scholar
  111. 111.
    G. L. Hendricks, K. L. Weirich, K. Viswanathan, et al. (2013). J. Biol. Chem. 288, 8061.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    R. Wagner, M. Matrosovich, and H.-D. Klenk (2002). Rev. Med. Virol. 12, 159.PubMedCrossRefGoogle Scholar
  113. 113.
    Y. Li, Z. Lin, M. Zhao, et al. (2016). ACS Appl. Mater. Interfaces 8, 24385.PubMedCrossRefGoogle Scholar
  114. 114.
    A. S. Levina, M. N. Repkova, N. A. Mazurkova, et al. (2016). IEEE Trans. Nanotechnol. 15, 248.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioresources and Food ScienceKonkuk UniversitySeoulRepublic of Korea
  2. 2.Department of BiotechnologyIndian Institute of Technology-MadrasChennaiIndia
  3. 3.Department of Environmental Health ScienceKonkuk UniversitySeoulKorea

Personalised recommendations