Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1061–1068 | Cite as

A Systematic Study of ZnO/CuO Core/Shell Nanostructures Pegylated by Microwave Assistant Reverse Micelles (RM) Method

  • Abbas Pardakhty
  • Mehdi Ranjbar
  • Mohammad Hasan Moshafi
  • Sara Abbasloo
Original Paper
  • 57 Downloads

Abstract

In this work we synthesized ZnO/CuO nanostructures pegylated by simple and fast microwave method assistant reverse micelles, Reverse micelles protocol creates many advantages in stability, particle size control, morphology, density, loading level, distribution, uniformity, charge and purification. Based on the statistical results ZnO/CuO nanostructures placed in the hydrophilic substrate. The effect of microwave and concentration of surfactant on the surface area, pore diameter and pore volume of the final product was systematically studied using Taguchi technique. ZnO/CuO core/shell pegylated nanostructures, indicating a ZnO as core and CuO as shell and continuous micelles chains around this structures. Products were characterized by UV–Vis spectra, X-ray diffraction, scanning electron microscopy, Dynamic light scattering, Energy-dispersive X-ray spectroscopy, transmission electron microscopy and nitrogen adsorption (i.e. Brunauer–Emmett–Teller surface area analysis).

Keywords

ZnO/CuO Reverse micelles Core/shell nanostructures Pegylation 

Notes

Acknowledgements

Authors are grateful to council of Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    P. Reiss, J. Bleuse, and A. Pron, NanoLett. 2, 781 (2002).CrossRefGoogle Scholar
  2. 2.
    M. Vatanparast, M. Ranjbar, M. Ramezani, S. M. Hosseinpour-Mashkani, and M. Mousavi-Kamazani, Superlattices Microstruct. 65, 365 (2014).CrossRefGoogle Scholar
  3. 3.
    P. Dauthal and M. Mukhopadhyay, Ind. Eng. Chem. Res. 51, 13014 (2012).CrossRefGoogle Scholar
  4. 4.
    I. Tsuji, H. Kato, and A. Kudo, Angew. Chem. Int. Ed. 44, 356 (2011).Google Scholar
  5. 5.
    M. Fouladgar and S. Ahmadzadeh, Appl. Surf. Sci. 379, 150 (2016).CrossRefGoogle Scholar
  6. 6.
    W. Chen, X. Pan, M. G. Willinger, D. S. Su, and X. Bao, J. Am. Chem. Soc. 128, 3136 (2006).CrossRefPubMedGoogle Scholar
  7. 7.
    M. T. Peracchia, E. Fattal, D. Desmaele, M. Besnard, J. P. Noël, J. M. Gomis, M. Appel, J. d’Angelo, and P. Couvreur, J. Control. Release 60, 121 (1999).CrossRefPubMedGoogle Scholar
  8. 8.
    H. Huang, P. Chang, and K. Chang, J. Biomed. Sci. 16, 10 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Cheng, B. Teply, and I. Sherifi, Biomaterials. 28, 869 (2007).CrossRefPubMedGoogle Scholar
  10. 10.
    W. Zhou, Z. Yin, D. H. Sim, H. Zhang, J. Ma, H. H. Hng, and Q. Yan, Nanotechnology 22, 195–199 (2011).Google Scholar
  11. 11.
    L. Qian, J. Zheng, K. Wang, Y. Tang, X. Zhang, H. Zhang, and Y. Jiang, Biomaterials. 34, 8968 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    H. Soltani, A. Pardakhty, and S. Ahmadzadeh, J Mol Liq. 219, 63 (2016).CrossRefGoogle Scholar
  13. 13.
    C.-C. Chien, M.-H. Jiang, M.-R. Tsai, and C. C. Chien, Toxicol. Chem. 30, 2202 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Mohadesi, M. Ranjbar, and S. M. Hosseinpour-Mashkani, Superlattices Microstruct. 66, 48 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Bharti, G. Kaur, Sh. Gupt and S.K. Tripathi, J. Lumin. 181 459 (2017).Google Scholar
  16. 16.
    M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan, J. Mater. Sci. Mater. Electron. 23, 728 (2012).CrossRefGoogle Scholar
  17. 17.
    M. A. Faramarzi and A. Sadighi, Adv. Colloid Interf. Sci. 1, 189 (2013).Google Scholar
  18. 18.
    P. Li, S. Liu, S. Yan, X. Fan, and Y. He, Colloids Surf. A. 7, 392 (2011).Google Scholar
  19. 19.
    M. Ranjbar, M. A. Taher and A. Sam, J Clust Sci. 25, 1657 (2014).CrossRefGoogle Scholar
  20. 20.
    W. Hua and T. Q. Liu, Colloids Surf. A. 377, 302 (2007).Google Scholar
  21. 21.
    W. Wu, R. T. Li, X. C. Bian, Z. S. Zhu, D. Ding, X. L. Li, Z. Jia, X. Jiang, and Y. Hu, ACS Nano. 3, 2740 (2009).CrossRefPubMedGoogle Scholar
  22. 22.
    S. Borhamdin, M. Shamsuddin, and A. Alizadeh, J. Exp. Nanosci. 11, 518–530 (2016).CrossRefGoogle Scholar
  23. 23.
    S. Zhu, L. Li, J. Liu, H. Wang, T. Wang, Y. Zhang, L. Zhang, R. S. Ruoff, and F. Dong, ACS Nano 12, 1033 (2018).CrossRefPubMedGoogle Scholar
  24. 24.
    X. Wang, Ch. Geb, K. Chen and Y. X. Zhang, Electrochim Acta. 259, 225 (2018).Google Scholar
  25. 25.
    X. Y. Liu, J. H. Peng, and Y. X. Zhang, Ceram. Int. 42, 19450 (2016).CrossRefGoogle Scholar
  26. 26.
    S. Das and V. C. Srivastava, Superlattices Microstruct. 57, 173 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abbas Pardakhty
    • 1
  • Mehdi Ranjbar
    • 1
  • Mohammad Hasan Moshafi
    • 1
  • Sara Abbasloo
    • 2
  1. 1.Pharmaceutics Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
  2. 2.Student Research CommitteeKerman University of Medical SciencesKermanIran

Personalised recommendations