Journal of Cluster Science

, Volume 29, Issue 6, pp 1039–1049 | Cite as

Novel Branched Template for the Use in Construction of [CuNCS]n Polypseudorotaxane: Synthesis, Structures, and Photocatalytic Properties

  • Min Xiao
  • Ya-Bin Lu
  • Zi-Yan Li
  • Yun-Yin NiuEmail author
Original Paper


Three novel extended supramolecular structures based on pseudohalides (SCN) and the flexible cationic template 1, n-bis(4-aminopyridine)alkane cations(n = 2–4), namely {(bape)0.5[Cu(SCN)2]}n (bape = 1, 2-bis(4-aminopyridine)ethane) (1), {(bapp) [Cu2(SCN)4]}n (bapp = 1, 3-bis(4-aminopyridine)propane) (2),{(bapb)0.5[Cu(SCN)2]}n (bapb = 1, 4-bis(4-aminopyridine)butane) (3) have been synthesized and characterized by IR spectroscopy, thermal gravimetric analysis, X-ray Powder Diffraction (PXRD), UV–Visdiffuse reflectance spectra and single-crystal X-ray diffraction in the solid state. Compounds 1 and 3 exhibit infinite two-dimensional polypseudorotaxane architecture. In compound 2, the cationic template bapp2+ induced [Cu2(SCN)4]2− cluster unit to generate a 3D coordination framework. The structural diversities show that the branched cationic template should very likely be excellent candidates to construct higher dimensional threading supramolecular architectures. In addition, the optical band gap, photocatalytic and the structure–property relationship of compounds 1–3 were also investigated.


Template Polypseudorotaxane Photocatalytic Supramolecular polymers 



We gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 21671177).

Supplementary material

10876_2018_1415_MOESM1_ESM.docx (168 kb)
Supplementary material 1 (DOCX 167 kb)


  1. 1.
    O. M. Yaghi, H. Li, C. Davis, D. Richardson, and T. L. Groy (1998). Acc. Chem. Res. 31, 474.CrossRefGoogle Scholar
  2. 2.
    H.-B. Duan, H. R. Zhao, X.-M. Ren, H. Zhou, Z.-F. Tian, and W.-Q. Jin (2011). Discuss. FaradaySoc. 40, 1672.Google Scholar
  3. 3.
    S. Mishra, E. Jeanneau, S. Daniele, G. Ledoux, and P. N. Swamy (2008). Inorg. Chem. 47, 9333.CrossRefPubMedGoogle Scholar
  4. 4.
    Y. Chen, Z. Yang, C.-X. Guo, C.-Y. Ni, H.-X. Li, Z.-G. Ren, and J. P. Lang (2011). CrystEngComm. 13, 243.CrossRefGoogle Scholar
  5. 5.
    Z.-J. Tang and A. M. Guloy (1999). J. Am. Chem. Soc. 121, 452.CrossRefGoogle Scholar
  6. 6.
    C. Chen, H.-Y. Qiu, W.-Z. Chen, and D.-Q. Wang (2008). J. Organomet. Chem. 693, 3273.CrossRefGoogle Scholar
  7. 7.
    J.-M. Yue, W.-J. Wang, W.-Z. Fu, X.-N. Han, Z.-H. Zhang, L.-F. Wang, and Y.-Y. Niu (2011). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 41, 100.Google Scholar
  8. 8.
    J.-Z. Huo, Z.-X. Zhao, M.-C. Shi, H.-L. Li, and Q.-X. Liu (2012). Acta Crystallogr. Sect. E 68, 787.CrossRefGoogle Scholar
  9. 9.
    A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li, M. Schrorder, M. Withersby, and M. A. Schroder (1999). Coord. Chem. Rev. 183, 117.CrossRefGoogle Scholar
  10. 10.
    V. A. Russel and M. D. Ward (1996). Chem. Mater. 8, 1654.CrossRefGoogle Scholar
  11. 11.
    S. Subramanian and M. Zaworotko (1994). Coord. Chem. Rev. 137, 357.CrossRefGoogle Scholar
  12. 12.
    N. Y. Li, Z. G. Ren, D. Liu, R. X. Yuan, L. P. Wei, L. Zhang, H. X. Li, and J. P. Lang (2010). DaltonTrans. 39, 4213.CrossRefGoogle Scholar
  13. 13.
    M. A. Omary, T. R. Webb, Z. Assefa, G. E. Shankle, and H. H. Patterson (1998). Inorg. Chem. 37, 1380.CrossRefPubMedGoogle Scholar
  14. 14.
    P. Bhowmik, S. Chattopadhyay, M. G. B. Drew, and A. Ghosh (2013). Inorg. Chim. Acta. 395, 24.CrossRefGoogle Scholar
  15. 15.
    H.-H. Li, Z.-R. Chen, J.-Q. Li, C.-C. Huang, Y.-F. Zhang, and G.-X. Jia (2006). Eur. J. Inorg. Chem. 12, 2447.CrossRefGoogle Scholar
  16. 16.
    H.-J. Du, W.-L. Zhang, C.-H. Wang, Y. Li, Y.-Y. Niu, and H.-W. Hou (2015). Inorg.Chem. Commun. 54, 45.CrossRefGoogle Scholar
  17. 17.
    J.-M. Yue, Y.-Y. Niu, B. Zhang, S.-W. Ng, and H.-W. Hou (2011). CrystEngComm. 13, 2571.CrossRefGoogle Scholar
  18. 18.
    Y.-Z. Qiao, W.-Z. Fu, J.-M. Yue, X.-C. Liu, Y.-Y. Niu, and H.-W. Hou (2012). CrystEngComm. 14, 3241.CrossRefGoogle Scholar
  19. 19.
    L.-S. Song, H.-M. Wang, Y.-Y. Niu, H.-W. Hou, and Y. Zhu (2012). CrystEngComm. 14, 4927.CrossRefGoogle Scholar
  20. 20.
    L. Li, L. Zhu, Z.-C. Yue, W.-L. Zhang, B. Zhang, Y.-Y. Niu, and H.-W. Hou (2013). CrystEngComm. 15, 8395.CrossRefGoogle Scholar
  21. 21.
    Y.-Z. Qiao, J.-M. Yue, X.-C. Liu, and Y.-Y. Niu (2011). CrystEngComm 13, 6885.CrossRefGoogle Scholar
  22. 22.
    L. Li, J.-M. Yue, Y.-Z. Qiao, Y.-Y. Niu, and H.-W. Hou (2013). CrystEngComm. 15, 3835.CrossRefGoogle Scholar
  23. 23.
    L. Li, H. Chen, Y.-Z. Qiao, and Y.-Y. Niu (2014). Inorg. Chim. Acta 409, 227.CrossRefGoogle Scholar
  24. 24.
    H.-J. Du, L.-W. Mi, Z.-C. Yue, Y.-Y. Niu, and H.-W. Hou (2014). Inorg. Chim. Acta 409, 418.CrossRefGoogle Scholar
  25. 25.
    C.-H. Wang, H.-J. Du, Y.-B. Lu, M.-M. Xu, B.-L. Wu, Y.-Y. Niu, and H. W. Hou (2016). Cryst. Growth Des. 16, 2487.CrossRefGoogle Scholar
  26. 26.
    M. Watanabe, T. Kamiya, K. Goto, N. Matsubara, A. Tsuchikura, and I. Shinohara (1981). Makromol Chem. 182, 2659.CrossRefGoogle Scholar
  27. 27.
    W.-Q. Kan, B. Liu, J. Yang, Y.-Y. Liu, and J.-F. Ma (2012). Cryst. Growth Des. 12, 2288.CrossRefGoogle Scholar
  28. 28.
    H.-S. Liu, Y.-Q. Lan, and S.-L. Li (2010). Cryst. Growth Des. 10, 5221.CrossRefGoogle Scholar
  29. 29.
    J. Guo, J. F. Ma, B. Liu, W. Q. Kan, and J. Yang (2011). Cryst. Growth Des. 11, 3609.CrossRefGoogle Scholar
  30. 30.
    L.-J. Zhang, Y.-G. Wei, C.-C. Wang, H.-Y. Guo, and P. Wang (2004). J. Solid. State. Chem. 177, 3433.CrossRefGoogle Scholar
  31. 31.
    J.-H. Liao, J.-S. Juang, and Y.-C. Lai (2006). Cryst. Growth Des. 6, 354.CrossRefGoogle Scholar
  32. 32.
    Y. Xia, P.-F. Wu, Y.-G. Wei, Y. Wang, and H.-Y. Guo (2006). Cryst. Growth Des. 6, 253.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations