Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1031–1037 | Cite as

A Naphthalenedisulfonate–Cadmium Coordination Polymer with Lewis Basic Pyridyl Sites for the Catalytic Application in Acetylation of Phenols

  • Ping Liu
  • Dongsheng Deng
  • Li Wang
Original Paper
  • 32 Downloads

Abstract

A new cadmium(II) arenedisulfonate coordination polymer with uncoordinated pyridyl groups, formulating as [Cd(tpim)(2,6-nds)]n (1), was synthesized by the hydrothermal reaction of 2,6-naphthalenedisulfonate (2,6-nds), 2,4,5-tri(4-pyridyl)-imidazole (tpim) and Cd(CH3COO)2. The functional utility is investigated by employing 1 as an efficient heterogeneous nucleophilic catalyst for the acetylation of phenols. The catalyst 1 is stable under the studied reaction conditions, and could be recycled without significantly losing activity.

Keywords

Crystal structure Naphthalenedisulfonate coordination polymers Acetylation Lewis basic catalyst 

Notes

Acknowledgements

We gratefully acknowledges the financial support from the Natural Science Foundation of China (Grant Nos. 21272109 and 21372112) and the Foundation of the Education Department of Henan Province (No. 2011B150021).

References

  1. 1.
    M. Yoon, R. Srirambalaji, and K. Kim (2012). Chem. Rev. 112, 1196.CrossRefPubMedGoogle Scholar
  2. 2.
    J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp (2009). Chem. Soc. Rev. 38, 1450.CrossRefPubMedGoogle Scholar
  3. 3.
    A. Corma, H. García, and F. X. Llabrés i Xamena (2010). Chem. Rev. 110, 4606.CrossRefPubMedGoogle Scholar
  4. 4.
    D. S. Deng, H. Guo, G. H. kang, L. F. Ma, H. He, and B. M. Ji (2015). CrystEngComm 17, 1871.CrossRefGoogle Scholar
  5. 5.
    C. M. Friend and B. Xu (2017). Acc. Chem. Res. 50, 517.CrossRefPubMedGoogle Scholar
  6. 6.
    S. Nayak, K. Harms, and S. Dehnen (2010). Inorg. Chem. 50, 2714.CrossRefGoogle Scholar
  7. 7.
    S. Horike, M. Dincǎ, K. Tamaki, and J. R. Long (2008). J. Am. Chem. Soc. 130, 5854.CrossRefPubMedGoogle Scholar
  8. 8.
    K. S. Jeong, Y. B. Go, S. M. Shin, S. J. Lee, J. Kim, O. M. Yaghi, and N. Jeong (2011). Chem. Sci. 2, 877.CrossRefGoogle Scholar
  9. 9.
    M. Savonnet, S. Aguado, U. Ravon, D. Bazer-Bachi, V. Lecocq, N. Bats, C. Pinel, and D. Farrusseng (2009). Green Chem. 11, 1729.CrossRefGoogle Scholar
  10. 10.
    L. F. Ma, X. N. Wang, D. S. Deng, F. Luo, B. M. Ji, and J. Zhang (2015). J. Mater. Chem. A 3, 20210.CrossRefGoogle Scholar
  11. 11.
    S. Seth, P. Venugopalan, and J. N. Moorthy (2015). Chem. Eur. J. 21, 2241.CrossRefPubMedGoogle Scholar
  12. 12.
    D. S. Deng, H. Guo, B. M. Ji, W. Z. Wang, L. F. Ma, and F. Luo (2017). New. J. Chem. 41, 12611.CrossRefGoogle Scholar
  13. 13.
    X. X. Gao, M. S. Liu, J. W. Lan, L. Liang, X. Zhang, and J. M. Sun (2017). Cryst. Growth Des. 17, 51.CrossRefGoogle Scholar
  14. 14.
    P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp, and O. K. Farha (2014). Chem. Soc. Rev. 43, 5896.CrossRefPubMedGoogle Scholar
  15. 15.
    I. H. Park, A. Chanthapally, Z. Zhang, S. S. Lee, M. J. Zaworotko, and J. J. Vittal (2014). Angew. Chem. Int. Ed. 53, 424.CrossRefGoogle Scholar
  16. 16.
    E. Debroye and T. N. Parac-Vogt (2014). Chem. Soc. Rev. 43, 8178.CrossRefPubMedGoogle Scholar
  17. 17.
    B. M. Ji, D. S. Deng, X. He, B. Liu, S. B. Miao, N. Ma, W. Z. Wang, L. G. Ji, P. Liu, and X. F. Li (2012). Inorg. Chem. 51, 2170.CrossRefPubMedGoogle Scholar
  18. 18.
    D. Liu, Z. G. Ren, H. X. Li, J. P. Lang, N. Y. Li, and B. F. Abrahams (2010). Angew. Chem. Int. Ed. 49, 4767.CrossRefGoogle Scholar
  19. 19.
    F. L. Li, Q. Shao, X. Q. Huang, and J. P. Lang (2018). Angew. Chem. Int. Ed. 57, 1888.CrossRefGoogle Scholar
  20. 20.
    M. J. Zhang, H. X. Li, and J. P. Lang (2016). Dalton Trans. 45, 17759.CrossRefPubMedGoogle Scholar
  21. 21.
    D. Liu, J. P. Lang, and B. F. Abrahams (2011). J. Am. Chem. Soc. 133, 11042.CrossRefPubMedGoogle Scholar
  22. 22.
    H. X. Li, Z. G. Ren, Y. Zhang, W. H. Zhang, J. P. Lang, and Q. Shen (2005). J. Am. Chem. Soc. 127, 1122.CrossRefPubMedGoogle Scholar
  23. 23.
    F. Wang, Y. T. Wang, Y. Hong, J. X. Chen, B. B. Gao, and J. P. Lang (2016). Inorg. Chem. 55, 9417.CrossRefPubMedGoogle Scholar
  24. 24.
    J. W. Cai (2004). Coord. Chem. Rev. 248, 1061.CrossRefGoogle Scholar
  25. 25.
    J. Zhang and X. H. Bu (2008). Chem. Commun. 44, 444.CrossRefGoogle Scholar
  26. 26.
    A. P. Côté and G. K. H. Shimizu (2003). Coord. Chem. Rev. 245, 49.CrossRefGoogle Scholar
  27. 27.
    L. Wang, J. Liu, H. Guo, D. S. Deng, T. Yao, X. W. Wang, X. Y. Wang, and H. L. Wu (2015). Inorg. Chim. Acta. 430, 253.CrossRefGoogle Scholar
  28. 28.
    X. W. Wang, H. Guo, M. J. Liu, X. Y. Wang, and D. S. Deng (2014). Chin. Chem. Lett. 25, 243.CrossRefGoogle Scholar
  29. 29.
    P. Kaur, J. T. Hupp, and S. T. Nguyen (2011). ACS Catal. 2011, (1), 819.CrossRefGoogle Scholar
  30. 30.
    SHELXTL, Version 5.1 (Bruker AXS, Madison, 1998).Google Scholar
  31. 31.
    G. M. Sheldrick, SHELXS-97 and SHELXL-97, Germany (1997).Google Scholar
  32. 32.
    J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, and K. Kim (2000). Nature 404, 982.CrossRefPubMedGoogle Scholar
  33. 33.
    T. G. Bonner and P. McNamara (1968). J. Chem. Soc. B. p. 795.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHenan Institute of Science and TechnologyXinxiangPeople’s Republic of China
  2. 2.Henan Key Laboratory of Function-Oriented Porous Materials, and College of Chemistry and Chemical EngineeringLuoyang Normal UniversityLuoyangPeople’s Republic of China
  3. 3.Key Laboratory of Pesticide and Chemical Biology, Ministry of Education and School of ChemistryCentral China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations