Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 1017–1022 | Cite as

A Tetradecanuclear Organometallic Copper(I)-Alkynide Cluster: Synthesis, Crystal Structure, and Luminescent Property

  • Hong-Yan Zhuo
  • An-Yi Hu
  • Lei Feng
  • Qing-Yun Liu
  • Xing-Po Wang
  • Di Sun
Original Paper
  • 192 Downloads

Abstract

A novel high-nuclearity copper(I) cluster formulated as [Cu14(tBuC≡C)10(CH3COO)4] (1) was synthesized through comproportionation reaction under stirring condition. The tetradecanuclear copper(I) cluster was identified by single-crystal X-ray diffraction and characterized using UV–Vis, IR, thermogravimetric analysis, powder X-ray diffraction and elemental analyses. Interestingly, powder sample of 1 exhibits remarkable yellow luminescence at room temperature.

Keywords

Copper(I)-alkynide cluster Comproportionation reaction Crystal structure Luminescence 

Notes

Acknowledgements

This work was financially supported by the NSFC (Grant No. 21571115), the Natural Science Foundation of Shandong Province (Nos. JQ201803 and ZR2017MB061), the Qilu Youth Scholar Funding of Shandong University and the Fundamental Research Funds of Shandong University (104.205.2.5).

Supplementary material

10876_2018_1413_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1721 kb)

References

  1. 1.
    D. M. Roundhill and J. P. Fackler Jr. Optoelectronic Properties of Inorganic Compounds (Plenum, New York, 1999), p. 195.CrossRefGoogle Scholar
  2. 2.
    M. J. Irwin, J. J. Vittal, and R. J. Puddephatt (1997). Organometallics 16, 3541.CrossRefGoogle Scholar
  3. 3.
    Y. G. Ma, C. M. Che, H. Y. Chao, X. M. Zhou, W. H. Chan, and J. C. Shen (1999). Adv. Mater. 11, 852.CrossRefGoogle Scholar
  4. 4.
    R. Buschbeck, P. J. Low, and H. Lang (2011). Coord. Chem. Rev. 255, 241.CrossRefGoogle Scholar
  5. 5.
    A. K. Gupta and A. Orthaber (2018). Chem. Eur. J. 24, 1.CrossRefGoogle Scholar
  6. 6.
    V. W. W. Yam (2002). Acc. Chem. Res. 35, 555.CrossRefPubMedGoogle Scholar
  7. 7.
    X. He and V. W. W. Yam (2011). Coord. Chem. Rev. 255, 2111.CrossRefGoogle Scholar
  8. 8.
    V. W. W. Yam, V. K. M. Au, and S. Y. L. Leung (2015). Chem. Rev. 115, 7589.CrossRefPubMedGoogle Scholar
  9. 9.
    I. O. Koshevoy, C. L. Lin, A. J. Karttunen, M. Haukka, C. W. Shih, P. T. Chou, S. P. Tunik, and T. A. Pakkanen (2011). Chem. Commun. 47, 5533.CrossRefGoogle Scholar
  10. 10.
    Y. A. Lee and R. Eisenberg (2003). J. Am. Chem. Soc. 125, 7778.CrossRefPubMedGoogle Scholar
  11. 11.
    I. O. Koshevoy, Y. C. Chang, A. J. Karttunen, M. Haukka, T. Pakkanen, and P. T. Chou (2012). J. Am. Chem. Soc. 134, 6564.CrossRefPubMedGoogle Scholar
  12. 12.
    R. Böttger (1859). Annalen 109, 351.CrossRefGoogle Scholar
  13. 13.
    V. W. W. Yam, W. K. M. Fung, and K. K. Cheung (1998). Organometallics 17, 3293.CrossRefGoogle Scholar
  14. 14.
    V. W. W. Yam, W. K. M. Fung, and K. K. Cheung (1996). Angew. Chem. Int. Ed. Engl. 35, 1100.CrossRefGoogle Scholar
  15. 15.
    V. W. W. Yam, W. K. M. Fung, and K. K. Cheung (1997). Chem. Commun. 963.Google Scholar
  16. 16.
    V. W. W. Yam, K. L. Yu, and K. K. Cheung (1999). J. Chem. Soc. Dalton Trans. 2913.Google Scholar
  17. 17.
    X. Y. Chang, K. H. Low, J. Y. Wang, J. S. Huang, and C. M. Che (2016). Angew. Chem. Int. Ed. 55, 10312.CrossRefGoogle Scholar
  18. 18.
    L. M. Zhang and T. C. W. Mak (2016). J. Am. Chem. Soc. 138, 2909.CrossRefPubMedGoogle Scholar
  19. 19.
    L. M. Zhang and T. C. W. Mak (2017). Angew. Chem. Int. Ed. 56, 16228.CrossRefGoogle Scholar
  20. 20.
    H. Y. Zhuo, H. F. Su, Z. Z. Cao, W. Liu, S. A. Wang, L. Feng, G. L. Zhuang, S. C. Lin, M. Kurmoo, C. H. Tung, D. Sun, and L. S. Zheng (2016). Chem. Eur. J. 22, 17619.CrossRefPubMedGoogle Scholar
  21. 21.
    G. Sheldrick (2008). Acta Crystallogr. A 64, 112.CrossRefPubMedGoogle Scholar
  22. 22.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
  23. 23.
    R. S. Dhayal, W. E. van Zyl, and C. W. Liu (2016). Acc. Chem. Res. 49, 86.CrossRefPubMedGoogle Scholar
  24. 24.
    R. S. Dhayal, J. H. Liao, X. Wang, Y. C. Liu, M. H. Chiang, S. Kahlal, J. Y. Saillard, and C. W. Liu (2015). Angew. Chem. Int. Ed. 54, 13604.CrossRefGoogle Scholar
  25. 25.
    C. B. Khadka, B. K. Najafabadi, M. Hesari, M. S. Workentin, and J. F. Corrigan (2013). Inorg. Chem. 52, 6798.CrossRefPubMedGoogle Scholar
  26. 26.
    C. W. Liu, B. Sarkar, Y. J. Huang, P. K. Liao, J. C. Wang, J. Y. Saillard, and S. Kahlal (2009). J. Am. Chem. Soc. 131, 11222.CrossRefPubMedGoogle Scholar
  27. 27.
    R. S. Dhayal, J. H. Liao, Y. R. Lin, P. K. Liao, S. Kahlal, J. Y. Saillard, and C. W. Liu (2013). J. Am. Chem. Soc. 135, 4704.CrossRefPubMedGoogle Scholar
  28. 28.
    C. Xu, X. Y. Li, T. K. Duan, Q. Chen, and Q. F. Zhang (2011). Polyhedron 30, 2637.CrossRefGoogle Scholar
  29. 29.
    F. Olbrich, J. Kopf, and E. Weiss (1993). Angew. Chem. 32, 1077.CrossRefGoogle Scholar
  30. 30.
    V. W. W. Yam, W. K. Lee, P. K. Y. Yeung, and D. Phillips (1994). J. Phys. Chem. 98, 7545.CrossRefGoogle Scholar
  31. 31.
    Q. H. Wei, G. Q. Yin, L. Y. Zhang, L. X. Shi, Z. W. Mao, and Z. N. Chen (2004). Inorg. Chem. 43, 3484.CrossRefPubMedGoogle Scholar
  32. 32.
    H. B. Song, Q. M. Wang, Z. Z. Zhang, and T. C. W. Mak (2001). Chem. Commun. 1658.Google Scholar
  33. 33.
    S. S. Y. Chui, M. F. Y. Ng, and C. M. Che (2005). Chem. Eur. J. 11, 1739.CrossRefPubMedGoogle Scholar
  34. 34.
    Z. H. Chen, L. Y. Zhang, and Z. N. Chen (2012). Organometallics. 31, 256.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China
  2. 2.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations