Advertisement

Journal of Cluster Science

, Volume 29, Issue 6, pp 981–988 | Cite as

Coal Combustion Synthesis of Coal Cinder-Supported TiO2 with Commendable Photocatalytic Activity

  • ZhangSheng Liu
  • LinNa Li
Original Paper
  • 59 Downloads

Abstract

Coal cinder-supported TiO2 photocatalysts were synthesized via a novel coal combustion method. As-obtained samples were characterized by XRD, SEM, EDS mapping, Raman spectra, FTIR and DRS, and their photocatalytic performances were evaluated by degradation of methylene blue (MB) and methyl orange (MO) under UV–Vis light illumination. The results revealed that mixed-phases TiO2 with adjustable anatase–rutile ratio could be obtained by adjusting the amount of precursor tetrabutyl titanate, which was uniformly covered on the coal cinder. These coal cinder-supported TiO2 photocatalysts exhibited commendable photocatalytic activity. Among them, the indexed CCT-7.5 sample presented the maximum of activity, which can be attributed to the optimal phase composition of TiO2. The present work provided a novel synthetic route to fabricate immobilized photocatalysts, which might be extended to the preparation of other functional materials.

Keywords

Photocatalysis Mixed-phase TiO2 Nanostructures Coal combustion 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of Jiangsu Province (No. BK20151143) and the bilateral project of NSFC-STINT (51611130064).

References

  1. 1.
    J. Pal, M. Ganguly, C. Mondal, A. Roy, Y. Negishi, and T. Pal (2013). J. Phys. Chem. C 117, 24640–24653.CrossRefGoogle Scholar
  2. 2.
    N. M. Nursam, X. D. Wang, and R. A. Caruso (2015). ACS Comb. Sci. 17, 548–569.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    A. L. Linesbigler, G. Lu, and J. T. Yates (1995). Chem. Rev. 95, 735–758.CrossRefGoogle Scholar
  4. 4.
    R. Zhang, A. A. Elzatahry, S. S. Al-Deyab, and D. Zhao (2012). Nano Today. 7, 344–366.CrossRefGoogle Scholar
  5. 5.
    K. Hashimoto, H. Irie, and A. Fujishima (2005). Jpn. J. Appl. Phys. 44, 8269–8285.CrossRefGoogle Scholar
  6. 6.
    J. Zhang, Y. C. Rui, Y. G. Li, Q. H. Zhang, and H. Z. Wang (2015). Electrochim. Acta 176, 480–487.CrossRefGoogle Scholar
  7. 7.
    M. Covei, L. Predoana, P. Osiceanu, J. M. Calderon-Moreno, M. Anastasescu, S. Preda, M. Nicolescu, M. Gartner, and M. Zaharescu (2016). Ceram. Int. 42, 13805–13811.CrossRefGoogle Scholar
  8. 8.
    L. K. Zhao and J. J. Lu (2017). Appl. Surf. Sci. 402, 369–371.CrossRefGoogle Scholar
  9. 9.
    A. M. H. Milad, L. J. Minggu, M. B. Kassim, and W. R. W. Daud (2013). Ceram. Int. 39, 3731–3739.CrossRefGoogle Scholar
  10. 10.
    D. S. Guan, P. J. Hymel, and Y. Wang (2012). Electrochim. Acta 83, 420–429.CrossRefGoogle Scholar
  11. 11.
    M. A. S. M. John, K. Ramamurthi, K. Sethuraman, and R. R. Babu (2017). Appl. Surf. Sci. 405, 195–204.CrossRefGoogle Scholar
  12. 12.
    F. Z. Shi, Y. G. Li, H. Z. Wang, and Q. H. Zhang (2012). Appl. Catal. B Environ. 123–124, 127–133.CrossRefGoogle Scholar
  13. 13.
    H. B. Huang, G. Y. Liu, Y. J. Zhan, Y. Xu, H. X. Lu, H. L. Huang, Q. Y. Feng, and M. Y. Wu (2017). Catal. Today. 281, 649–655.CrossRefGoogle Scholar
  14. 14.
    P. Chen, F. L. Wang, Z. F. Chen, Q. X. Zhang, Y. H. Su, L. Z. Shen, K. Yao, Y. Liu, Z. W. Cai, W. Y. Lv, and G. G. Liu (2017). Appl. Catal. B Environ. 204, 250–259.CrossRefGoogle Scholar
  15. 15.
    L. Yang, F. Z. Wang, A. Hakki, D. E. Macphee, P. Liu, and S. G. Hu (2017). Appl. Surf. Sci. 392, 687–696.CrossRefGoogle Scholar
  16. 16.
    H. Liu, L. Y. Su, F. F. Liu, C. Li, and U. U. Solomon (2011). Appl. Catal. B Environ. 106, 550–558.CrossRefGoogle Scholar
  17. 17.
    C. C. Nguyen, D. T. Nguyen, and T. O. Do (2018). Appl. Catal. B Environ. 226, 46–52.CrossRefGoogle Scholar
  18. 18.
    A. G. Ilie, M. Scarisoareanu, I. Morjan, E. Dutu, M. Badiceanu, and I. Mihailescu (2017). Appl. Surf. Sci. 417, 93–103.  https://doi.org/10.1016/j.apsusc.2017.01.193.CrossRefGoogle Scholar
  19. 19.
    D. Voll, P. Angerer, A. Beran, and H. Schneider (2002). Vib. Spectrosc. 30, 237–243.CrossRefGoogle Scholar
  20. 20.
    T. Sahraoui, H. Belhouchet, M. Heraiz, N. Brihi, and A. Guermat (2016). Ceram. Int. 42, 12185–12193.CrossRefGoogle Scholar
  21. 21.
    J. L. Li, X. T. Xu, X. J. Liu, W. Qin, M. Wang, and L. K. Pan (2017). J. Alloy Compd. 690, 640–646.CrossRefGoogle Scholar
  22. 22.
    Y. Shiraishi, N. Saito, and T. Hirai (2005). J. Am. Chem. Soc. 127, 12820–12822.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    H. H. Wang, S. J. Dong, Y. Chang, and J. L. Faria (2012). J. Hazard. Mater. 235–236, 230–236.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    P. N. Gaikwad, T. M. Wandre, K. M. Garadkar, P. P. Hankare, and R. Sasikala Jagannath (2016). Colloids Surf. A Physicochem. Eng. Asp. 506, 804–811.CrossRefGoogle Scholar
  25. 25.
    J. L. Li, X. T. Xu, X. J. Liu, W. Qin, and L. K. Pan (2017). Ceram. Int. 43, 835–840.CrossRefGoogle Scholar
  26. 26.
    V. Likodimos, A. Chrysi, M. Calamiotou, C. Fernández-Rodríguez, J. M. Doña-Rodríguez, D. D. Dionysiou, and P. Falaras (2016). Appl. Catal. B Environ. 192, 242–252.CrossRefGoogle Scholar
  27. 27.
    T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura (2001). J. Catal. 203, 82–86.CrossRefGoogle Scholar
  28. 28.
    Y. Y. Zhang, J. Z. Chen, and X. J. Li (2010). Catal. Lett. 139, 129–133.CrossRefGoogle Scholar
  29. 29.
    G. H. Li, C. P. Richter, R. L. Milot, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, and V. S. Batista (2009). Dalton Trans. 45, 10078–10085.CrossRefGoogle Scholar
  30. 30.
    L. Elsellami, F. Dappozze, N. Fessi, A. Houas, and C. Guillard (2018). Process Saf. Environ. Prot. 113, 109–121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations