Journal of Cluster Science

, Volume 29, Issue 6, pp 975–980 | Cite as

Structures, Magnetic and Thermodynamic Properties of a 3d–4f Mixed Metal Cluster [ErZn6(μ3-O)3(μ3-C2H4NO2)6(H2O)9]6+

  • Shuai Guo
  • Xue-Chuan LvEmail author
  • Xiao-Han Gao
  • Cheng-Long Li
  • Xiao-Fan Zhang
Original Paper


A heterometallic 3d–4f complex with hepta-nuclear hexagonal cluster, [ErZn6(μ3-O)3(μ3-C2H4NO2)6(H2O)9]6+ (C2H4NO2 = glycine) was synthesized and characterized. The cluster belongs to hexagonal crystal system. It crystallizes in the P-6 space group. In each cluster, Er3+ ion is in the center of a prism, which is composed of six zinc atoms. Er3+ ion coordinates to nine oxygen atoms. Each glycine ligand chelates to two Zn2+ and one Er3+ ions using a μ3-coordination mode. Fluorescent, thermodynamic and magnetic studies of the cluster were performed. The complex does not show single molecule magnet behavior.


3d–4f Clusters Heptanuclear Fluorescent Magnetic studies 



This research was supported by the National Natural Science Foundation of China (21003069, 21103078).

Supplementary material

10876_2018_1407_MOESM1_ESM.docx (110 kb)
Supplementary material 1 (DOCX 109 kb)
10876_2018_1407_MOESM2_ESM.docx (124 kb)
Supplementary material 2 (DOCX 124 kb)


  1. 1.
    R. Sessoli and A. K. Powell (2009). Chem. Rev. 253, 2328.Google Scholar
  2. 2.
    R. Varun and P. Ajith (2014). Theor. Chem. Acc. 133, 1515.CrossRefGoogle Scholar
  3. 3.
    P. H. Lin, T. J. Burchell, L. Ungur, L. F. Chibotaru, W. Wernsdorfer, and M. Murugesu (2009). Angew. Chem. Int. Ed. 48, 9489.CrossRefGoogle Scholar
  4. 4.
    G. J. Chen, C. Y. Gao, J. L. Tian, J. Tang, W. Gu, X. Liu, S. P. Yan, D. Z. Liao, and P. Cheng (2011). Dalton Trans. 40, 5579.CrossRefPubMedGoogle Scholar
  5. 5.
    G. Abbas, Y. Lan, G. E. Kostakis, W. Wernsdorfer, C. E. Anson, and A. K. Powell (2010). Inorg. Chem. 49, 8067.CrossRefPubMedGoogle Scholar
  6. 6.
    J. W. Cheng and G. Y. Yang, Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy, in Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials (2017), p. 97.Google Scholar
  7. 7.
    B. Joarder, A. K. Chaudhari, G. Rogez, and S. K. Ghosh (2012). Dalton Trans. 41, 7695.CrossRefPubMedGoogle Scholar
  8. 8.
    B. F. Habenicht, T. Dieh, S. F. Lymarie, and D. S. Sholl (2014). Top. Catal. 57, 69.CrossRefGoogle Scholar
  9. 9.
    Y. X. Chi, Y. Li, X. Y. Tang, X. S. Hu, R. X. Wang, J. Jin, and S.-Y. Niu (2015). Polyhedron 98, 154–161.CrossRefGoogle Scholar
  10. 10.
    C. Papatriantafyllopoulou, W. Wernsdorfer, K. A. Abboud, and G. Christou (2011). Inorg. Chem. 50, 421.CrossRefPubMedGoogle Scholar
  11. 11.
    F. Cao, R. M. Wei, J. Li, L. Yang, Y. Han, Y. Song, and J. M. Dou (2016). Inorg. Chem.. Scholar
  12. 12.
    Y. R. Qin and Q. Gao (2017). J. Clust. Sci. 28, 891.CrossRefGoogle Scholar
  13. 13.
    D. Q. Bi and Y. L. Hu (2015). Chin. J. Struct. Chem. 34, 1598.Google Scholar
  14. 14.
    X. H. Wei, L. Y. Yang, and S. Y. Liao (2014). Dalton Trans. 43, 5793.CrossRefPubMedGoogle Scholar
  15. 15.
    J. F. Lu and Z. H. Liu (2016). J. Clust. Sci. 27, 573.CrossRefGoogle Scholar
  16. 16.
    C. C. Wang and Y. S. Ho (2016). Scientometrics 109, 481.CrossRefGoogle Scholar
  17. 17.
    B. K. Teo (2015). J. Clust. Sci. 26, 661.CrossRefGoogle Scholar
  18. 18.
    R. Das and P. K. Chattaraj (2014). PCCP 16, 21964.CrossRefPubMedGoogle Scholar
  19. 19.
    Y. E. Wu, D. S. Wang, and Y. D. Li (2016). Sci. China Mater. 11, 938.CrossRefGoogle Scholar
  20. 20.
    L. Mueller, H. Traub, and N. Jakubowski (2014). Anal. Bioanal. Chem. 406, 6963.CrossRefPubMedGoogle Scholar
  21. 21.
    P. Sen (2016). J. Clust. Sci. 27, 795.CrossRefGoogle Scholar
  22. 22.
    Y. M. Litvinova and Y. M. Gayfulin (2017). J. Clust. Sci. 28, 3103.CrossRefGoogle Scholar
  23. 23.
    W. R. Jiang and Z. G. Wang (2016). J. Clust. Sci. 27, 845.CrossRefGoogle Scholar
  24. 24.
    O. N. Pashkova and A. D. Izotov (2014). Russ. J. Inorg. Chem. 59, 689.CrossRefGoogle Scholar
  25. 25.
    W. R. Yu and G. Hsian (2013). Dalton Trans. 42, 3941.CrossRefPubMedGoogle Scholar
  26. 26.
    G. J. Sopasis, A. B. Canaj, A. Philippidis, M. Siczek, T. Lis, J. R. O’Brien, M. M. Antonakis, S. A. Pergantis, and C. J. Milios (2012). Inorg. Chem. 51, 5911.CrossRefPubMedGoogle Scholar
  27. 27.
    K. Griffiths, V. N. Dokorou, J. Spencer, A. Abdul-Sada, A. Vargas, and G. E. Kostakis (2016). CrystEngComm 704, 18.Google Scholar
  28. 28.
    G. E. Kostakis, V. A. Blatov, and D. M. Proserpio (2012). Dalton Trans. 41, 4634.CrossRefPubMedGoogle Scholar
  29. 29.
    A. Yin, W. H. Fang, Q. Wei, and G. Y. Yang (2015). J. Clust. Sci. 26, 1801.CrossRefGoogle Scholar
  30. 30.
    W. J. Huang and H. Y. Wei (2016). J. Clust. Sci. 27, 1463.CrossRefGoogle Scholar
  31. 31.
    D. S. Lzle, M. Bauser, and T. Frenzel (2015). J. Clust. Sci. 26, 111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shuai Guo
    • 1
  • Xue-Chuan Lv
    • 1
    Email author
  • Xiao-Han Gao
    • 1
  • Cheng-Long Li
    • 1
  • Xiao-Fan Zhang
    • 1
  1. 1.School of Chemistry and Material Science, College of Chemical Engineering and EnvironmentalLiaoning Shihua UniversityFushunChina

Personalised recommendations