Journal of Cluster Science

, Volume 29, Issue 6, pp 967–974 | Cite as

Photoluminescence and Magnetism Study of Blue Light Emitting the Oxygen-Bridged Open-Cubane Cobalt(II) Cluster

  • Elif GungorEmail author
  • Mustafa Burak Coban
  • Hulya KaraEmail author
  • Yasemin Acar
Original Paper


A new cubane-based cobalt(II) cluster, [Co4L4] (1), where H2L = 2-((E)-(2-hydroxyethylimino) methyl)-4-chlorophenol has been prepared using a solvothermal process and characterized by structural, optical and magnetism. The crystal structure of 1 consists of a tetranuclear Co4O4 core in an open-cubane framework. Each cobalt(II) ion is penta-coordinated in a distorted square pyramidal geometry (τCo1=Co1i = 0.030, τCo2=Co2i = 0.023). Furthermore, the photoluminescence analysis indicates that 1 has a strong blue emission which should be attributed to coordination of the metal to the ligand. The temperature dependence of the magnetic susceptibilities of 1 shows antiferromagnetic coupling (J = − 26.61 ± 0.01) between cobalt(II) ions.


Schiff base Open-cubane Co(II) cluster Photoluminescence Antiferromagnetic interaction 



The authors are grateful to the Research Funds of Balikesir University (BAP–2017/199) for the financial support and Balikesir University, Science and Technology Application and Research Center (BUBTAM) for the use of the Photoluminescence Spectrometer. The authors are also very grateful to Prof. Dr. Andrea Caneschi (Laboratory of Molecular Magnetism, Department of Chemistry, University of Florence) for the use of SQUID magnetometer and helpful suggestions.

Supplementary material

10876_2018_1406_MOESM1_ESM.doc (404 kb)
Supplementary material 1 (DOC 405 kb)


  1. 1.
    S. G. Kang, H. Kim, S. Bang, and C. H. Kwak (2013). Inorg. Chim. Acta 396, 10.CrossRefGoogle Scholar
  2. 2.
    C. J. Adams, M. A. Kurawa, M. Lusi, and A. G. Orpen (2008). CrystEngComm 10, 1790.CrossRefGoogle Scholar
  3. 3.
    O. Kahn Molecular Magnetism (VCH Publishers, New York, 1993).Google Scholar
  4. 4.
    A. Mukherjee, R. Raghunathan, M. K. Saha, M. Nethaji, S. Ramasesha, and A. R. Chakravarty (2005). Chem. A Eur. J. 11, 3087.CrossRefGoogle Scholar
  5. 5.
    W. Kaim and B. Schwerderski Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life (John Wiley, Chichester, 1994).Google Scholar
  6. 6.
    K. Dimitrou, K. Folting, W. E. Streib, and G. Christou (1993). J. Am. Chem. Soc. 115, 6432.CrossRefGoogle Scholar
  7. 7.
    W. F. Ruettinger, D. M. Ho, and G. C. Dismukes (1999). Inorg. Chem. 38, 1036.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    E. C. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. Ledezma-Gairaud, and G. Christou (2002). J. Appl. Phys. 91, 7382.CrossRefGoogle Scholar
  9. 9.
    C. J. Milios, A. Vinslava, P. A. Wood, S. Parsons, W. Wernsdorfer, G. Christou, S. P. Perlepes, and E. K. Brechin (2007). J. Am. Chem. Soc. 129, 8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    S. Celen, E. Gungor, H. Kara, and A. D. Azaz (2016). Mol. Cryst. Liq. Cryst. 631, 164.CrossRefGoogle Scholar
  11. 11.
    E. Gungor, S. Celen, D. Azaz, and H. Kara (2012). Spectrochim. Acta—Part A Mol. Biomol Spectrosc. 94, 216.CrossRefGoogle Scholar
  12. 12.
    H. F. Abd El-Halim and G. G. Mohamed (2018). Appl. Organomet. Chem. 32, e4176.CrossRefGoogle Scholar
  13. 13.
    C. Ni, E. E. Knyazeva, I. F. Moskovskaya, and B. V. Romanovsky (2001). Polyhedron 20, 915.CrossRefGoogle Scholar
  14. 14.
    R. Chakrabarty, S. J. Bora, and B. K. Das (2007). Inorg. Chem. 46, 9450.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    G. Christou (1989). Acc. Chem. Res. 22, 328.CrossRefGoogle Scholar
  16. 16.
    S. Mukhopadhyay, S. K. Mandal, S. Bhaduri, and W. H. Armstrong (2004). Chem. Rev. 104, 3981.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    S. Konar, A. Jana, K. Das, S. Ray, S. Chatterjee, J. A. Golen, A. L. Rheingold, and S. K. Kar (2011). Polyhedron 30, 2801.CrossRefGoogle Scholar
  18. 18.
    A. Majumder, G. M. Rosair, A. Mallick, N. Chattopadhyay, and S. Mitra (2006). Polyhedron 25, 1753.CrossRefGoogle Scholar
  19. 19.
    T. Yu, W. Su, W. Li, Z. Hong, R. Hua, and B. Li (2007). Thin Solid Films 515, 4080.CrossRefGoogle Scholar
  20. 20.
    M. Srinivas, G. R. Vijayakumar, K. M. Mahadevan, H. Nagabhushana, and H. S. Bhojya Naik (2017). J. Sci. Adv. Mater. Devices 2, 156.CrossRefGoogle Scholar
  21. 21.
    M. Srinivas, T. O. Shrungesh Kumar, K. M. Mahadevan, S. Naveen, G. R. Vijayakumar, H. Nagabhushana, M. N. Kumara, and N. K. Lokanath (2016). J. Sci. Adv. Mater. Devices 1, 324.CrossRefGoogle Scholar
  22. 22.
    L. M. Leung, W. Y. Lo, S. K. So, K. M. Lee, and W. K. Choi (2000). J. Am. Chem. Soc. 122, 5640.CrossRefGoogle Scholar
  23. 23.
    G. Yu, Y. Liu, Y. Song, X. Wu, and D. Zhu (2001). Synth. Met. 117, 211.CrossRefGoogle Scholar
  24. 24.
    F. Sama, I. A. Ansari, M. Raizada, M. Ahmad, M. Ashafaq, M. Shahid, B. Das, K. Shankar, and Z. A. Siddiqi (2017). J. Clust. Sci. 28, 1355.CrossRefGoogle Scholar
  25. 25.
    A. Buragohain, M. Yousufuddin, M. Sarma, and S. Biswas (2016). Cryst. Growth Des. 16, 842.CrossRefGoogle Scholar
  26. 26.
    J. L. H. A. Duprey, J. Carr-Smith, S. L. Horswell, J. Kowalski, and J. H. R. Tucker (2016). J. Am. Chem. Soc. 138, 746.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    L. Jiang, D. Y. Zhang, J. J. Suo, W. Gu, J. L. Tian, X. Liu, and S. P. Yan (2016). Dalt. Trans. 45, 10233.CrossRefGoogle Scholar
  28. 28.
    L. Wen, Y. Li, D. Dang, Z. Tian, Z. Ni, and Q. Meng (2005). J. Solid State Chem. 178, 3336.CrossRefGoogle Scholar
  29. 29.
    M. B. Coban, E. Gungor, H. Kara, U. Baisch, and Y. Acar (2018). J. Mol. Struct. 1154, 579.CrossRefGoogle Scholar
  30. 30.
    I. A. Ansari, F. Sama, M. Shahid, M. Khalid, P. K. Sharma, M. Ahmad, and Z. A. Siddiqi (2016). J. Inorg. Organomet. Polym. Mater. 26, 178.CrossRefGoogle Scholar
  31. 31.
    C. N. Brodsky, R. G. Hadt, D. Hayes, B. J. Reinhart, N. Li, L. X. Chen, and D. G. Nocera (2017). Proc. Natl. Acad. Sci. 114, 3855.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    F. Evangelisti, R. Güttinger, R. Moré, S. Luber, and G. R. Patzke (2013). J. Am. Chem. Soc. 135, 18734.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    K. G. Alley, R. Bircher, H. U. Güdel, B. Moubaraki, K. S. Murray, B. F. Abrahams, and C. Boskovic (2007). Polyhedron 26, 369.CrossRefGoogle Scholar
  34. 34.
    Y. Wang, Y. Ma, R. Liu, L. Yang, G. Tian, and N. Sheng (2016). Z. Anorg. Allg Chem. 642, 546.CrossRefGoogle Scholar
  35. 35.
    S. H. Zhang, Y. D. Zhang, H. H. Zou, J. J. Guo, H. P. Li, Y. Song, and H. Liang (2013). Inorg. Chim. Acta 396, 119.CrossRefGoogle Scholar
  36. 36.
    W. B. Shi, A. L. Cui, and H. Z. Kou (2015). Polyhedron 99, 252.CrossRefGoogle Scholar
  37. 37.
    Q. Gao, Y. Qin, Y. Chen, W. Liu, H. Li, B. Wu, Y. Li, and W. Li (2015). RSC Adv. 5, 43195.CrossRefGoogle Scholar
  38. 38.
    E. Gungor and H. Kara (2012). Inorg. Chim. Acta 384, 137.CrossRefGoogle Scholar
  39. 39.
    Y. Yahsi, E. Gungor, M. B. Coban, and H. Kara (2016). Mol. Cryst. Liq. Cryst. 637, 67.CrossRefGoogle Scholar
  40. 40.
    E. Gungor (2017). Acta Crystallogr. Sect. C Struct. Chem. 73, 393.CrossRefGoogle Scholar
  41. 41.
    E. Gungor, H. Kara, E. Colacio, and A. J. Mota (2014). Eur. J. Inorg. Chem. 9, 1552.CrossRefGoogle Scholar
  42. 42.
    E. Gungor and H. Kara (2015). J. Struct. Chem. 56, 1646.CrossRefGoogle Scholar
  43. 43.
    C. Kocak, G. Oylumluoglu, A. Donmez, M. B. Coban, U. Erkarslan, M. Aygun, and H. Kara (2017). Acta Crystallogr. Sect. C Struct. Chem. 73, 414.CrossRefGoogle Scholar
  44. 44.
    G. P. Guedes, S. Soriano, N. M. Comerlato, N. L. Speziali, P. M. Lahti, M. A. Novak, and M. G. F. Vaz (2012). Eur. J. Inorg. Chem. 34, 5642.CrossRefGoogle Scholar
  45. 45.
    K. Zhang, J. Dai, Y. H. Wang, M. H. Zeng, and M. Kurmoo (2013). Dalt. Trans. 42, 5439.CrossRefGoogle Scholar
  46. 46.
    E. Loukopoulos, B. Berkoff, K. Griffiths, V. Keeble, V. N. Dokorou, A. C. Tsipis, A. Escuer, and G. E. Kostakis (2015). CrystEngComm 17, 6753.CrossRefGoogle Scholar
  47. 47.
    R. Wang, M. Hong, W. Su, and R. Cao (2001). Acta Crystallogr. Sect. E Struct. Rep. Online 57, m325.CrossRefGoogle Scholar
  48. 48.
    Bruker APEX2, SAINT-Plus and SADABS (Bruker AXS Inc., Madison, 2008).Google Scholar
  49. 49.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
  50. 50.
    G. M. Sheldrick (2008). Acta Crystallogr. A 64, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    G. M. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 3.CrossRefGoogle Scholar
  52. 52.
    G. J. Palenik (1997). Inorg. Chem. 36, 4888.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    W. Liu and H. H. Thorp (1993). Inorg. Chem. 32, 4102.CrossRefGoogle Scholar
  54. 54.
    A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor (1984). J. Chem. Soc. Dalt. Trans. 1349.Google Scholar
  55. 55.
    S. H. Zhang, L. F. Ma, H. H. Zou, Y. G. Wang, H. Liang, and M. H. Zeng (2011). Dalt. Trans. 40, 11402.CrossRefGoogle Scholar
  56. 56.
    S. H. Rahaman, R. Ghosh, T. H. Lu, and B. K. Ghosh (2005). Polyhedron 24, 1525.CrossRefGoogle Scholar
  57. 57.
    C. Hopa and I. Cokay (2016). Acta Crystallogr. Sect. C Struct. Chem. 72, 601.CrossRefGoogle Scholar
  58. 58.
    A. B. Lever In Inorganic Electronic Spectroscopy. Studies in Physical and Theoretical Chemistry, vol. 33 (Elsevier, Amsterdam, 1984).Google Scholar
  59. 59.
    S. Bibi, S. Mohammad, N. S. A. Manan, J. Ahmad, M. A. Kamboh, S. M. Khor, B. M. Yamin, and S. N. Abdul Halim (2017). J. Mol. Struct. 1141, 31.CrossRefGoogle Scholar
  60. 60.
    A. Donmez, M. B. Coban, C. Kocak, G. Oylumluoglu, U. Baisch, and H. Kara (2017). Mol. Cryst. Liq. Cryst. 652, 213.CrossRefGoogle Scholar
  61. 61.
    A. Donmez, G. Oylumluoglu, M. B. Coban, C. Kocak, M. Aygun, and H. Kara (2017). J. Mol. Struct. 1149, 569.CrossRefGoogle Scholar
  62. 62.
    G. Wu, X.-F. Wang, T. Okamura, W. Y. Sun, and N. Ueyama (2006). Inorg. Chem. 45, 8523.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    G. B. Che, C. B. Liu, B. Liu, Q. W. Wang, and Z.-L. Xu (2008). CrystEngComm 10, 184.CrossRefGoogle Scholar
  64. 64.
    A. Scheurer, A. M. Ako, R. W. Saalfrank, F. W. Heinemann, F. Hampel, K. Petukhov, K. Gieb, M. Stocker, and P. Müller (2010). Chem. A Eur. J. 16, 4784.CrossRefGoogle Scholar
  65. 65.
    J. F. Berry, F. A. Cotton, C. Y. Liu, T. Lu, C. A. Murillo, B. S. Tsukerblat, D. Villagrán, and X. Wang (2005). J. Am. Chem. Soc. 127, 4895.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    A. Scheurer, J. Korzekwa, T. Nakajima, F. Hampel, A. Buling, C. Derks, M. Neumann, L. Joly, K. Petukhov, K. Gieb, P. Müller, K. Kuepper, and K. Meyer (2015). Eur. J. Inorg. Chem. 2015, 1892.CrossRefGoogle Scholar
  67. 67.
    T. A. Hudson, K. J. Berry, B. Moubaraki, K. S. Murray, and R. Robson (2006). Inorg. Chem. 45, 3549.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and ArtBalikesir UniversityBalikesirTurkey
  2. 2.Center of Science and Technology Application and ResearchBalikesir UniversityBalikesirTurkey
  3. 3.Department of Physics, Faculty of ScienceMugla Sitki Kocman UniversityMuglaTurkey

Personalised recommendations