Journal of Cluster Science

, Volume 29, Issue 6, pp 1051–1060 | Cite as

Synthesis, Characterization, DFT Calculations and Non-linear Optical Properties of a New Organic–Inorganic Arsenate

  • Sami SoukrataEmail author
  • Thameur Dammak
  • Tahar Mhiri
  • Mohamed Belhouchet
Original Paper


This paper undertakes the synthesis by slow evaporation method at room temperature of a new organic–inorganic hybrid material with the general formula [C12H13N2O]H2AsO4. The newly developed hybrid is characterized by X-ray single crystal diffraction, Infrared, Raman spectroscopy and density functional theory (DFT) calculations. At ambient temperature, this compound crystallizes in the non-centrosymmetric space group P212121 of the orthorhombic system. The structural arrangement is formed by infinite anionic chains extending parallel to the direction [100]. The organic entities are linked to these chains by N–H···O type hydrogen bonds which play an important role in the cohesion of the one-dimensional network. The optimized molecular structure, vibrational spectra and the optical properties were calculated by the DFT method using the B3LYP function with the LanL2DZ basis set. The vibrational wavenumbers were evaluated for this compound by using transferable scale factor. The first hyperpolarizability value βtot of the title compound is equal to 15.94 × 10−31 esu. Hence, the large β value calculated by the B3LYP method shows that the studied compound is a good NLO material and is suitable for future non-linear optical studies. The HOMO–LUMO energy gap and other related molecular properties are going to be discussed and reported later.


Organic–inorganic hybrid X-ray diffraction Infrared and Raman spectroscopy DFT calculations Non-linear optical properties 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A. Matei, C. Constantinescu, B. Mitu, M. Filipescu, V. Ion, I. Ionita, S. Brajnicov, A. P. Alloncle, Ph. Delaporte, A. Emandi, and M. Dinescu (2015). Appl. Surf. Sci. 336, 200–205.CrossRefGoogle Scholar
  2. 2.
    S. SoYoon, A. Ramadoss, B. Saravanakumar, and S. Jae Kim (2014). J. Electroanal. Chem. 717, 90–95.CrossRefGoogle Scholar
  3. 3.
    V. Ion, A. Matei, C. Constantinescu, I. Ionita, M. Marinescu, M. Dinescu, and A. Emandi (2015). Mater. Sci. Semicond. Proc. 36, 78–83.CrossRefGoogle Scholar
  4. 4.
    G. Ray and B. Kumar (2015). Mater. Lett. 143, 105–107.CrossRefGoogle Scholar
  5. 5.
    Z. Kotler, R. Hierle, D. Josse, J. Zyss, and R. Masse (1992). J. Opt. Soc. Am. B 9, 534–547.CrossRefGoogle Scholar
  6. 6.
    N. Horiuchi, F. Lefaucheux, A. Ibanez, D. Josse, and J. Zyss (2002). J. Opt. Soc. Am. B 19, 1830–1838.CrossRefGoogle Scholar
  7. 7.
    S. Manivannan, S. Dhanuskodi, K. Kirschbaum, and S. K. Tiwari (2005). Cryst. Growth Des. 5, 1463–1468.CrossRefGoogle Scholar
  8. 8.
    W. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar, and B. Sahraoui (2008). Adv. Mater. 20, 1013–1017.CrossRefGoogle Scholar
  9. 9.
    D. Josse, R. Heirle, I. Ledoux, and J. Zyss (1988). Appl. Phys. Lett. 53, 2251–2253.CrossRefGoogle Scholar
  10. 10.
    B. F. Levine, C. G. Bethea, C. D. Thermond, R. T. Lynch, and J. L. Bernstein (1979). J. Appl. Phys. 50, 2523–2527.CrossRefGoogle Scholar
  11. 11.
    R. Hierle, J. Badan, and J. Zyss (1984). J. Cryst. Growth. 69, 545–554.CrossRefGoogle Scholar
  12. 12.
    K. Bouchouit, E. E. Bendeif, H. EL Ouazzani, S. Dahaoui, C. Lecomte, N. Benalicherif, and B. Sahraoui (2010). J. Chem. Phys. 375, 1–7.Google Scholar
  13. 13.
    N. Sudharsana, G. Subramanian, V. Krishnakumar, and R. Nagalakshm (2012). J. Spectrochim. Acta. A 97, 798–805.CrossRefGoogle Scholar
  14. 14.
    U. Meir, M. Bosch, C. Boshard, and P. Gunter (2000). Synth. Met. 109, 19–22.CrossRefGoogle Scholar
  15. 15.
    G. M. Sheldrick SHELXS-97 Program for the Solution of Crystal Structures (University of Göttingen, Germany, 1997).Google Scholar
  16. 16.
    G. M. Sheldrick SHELXL-97 Program for Crystal Structure Refinement (University of Göttingen, Germany, 1997).Google Scholar
  17. 17.
    L. J. Farrugia (1997). J Appl. Cryst. 30, 565–566.CrossRefGoogle Scholar
  18. 18.
    K. Brandenburg, Diamond Version 2.0 Crystal Impact GbR, Bonn, Germany, 1998.Google Scholar
  19. 19.
    N. Zhanpelsov, M. Matsuoka, H. Yamashite, and M. Anpo (1998). J. Phys. Chem. B 102, 6915–6920.CrossRefGoogle Scholar
  20. 20.
    N. Niclasc, M. Dolg, H. Stoll, and H. Preuss (1995). J. Chem. Phys. 102, 8942–8952.CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  22. 22.
    National Institute of Standards and Technology (NIST). Computational Chemistry Comparison and Benchmark Database: Precomputed Vibrational Scaling Factors.
  23. 23.
    A. Chtioui, L. Benhamada, S. Belghith, and A. Jouini (2010). Mater. Res. Bull. 45, 1692–1695.CrossRefGoogle Scholar
  24. 24.
    A. Oueslati, A. Rayes, C. Ben Nasr, and F. Lefebvre (2005). Mater. Res. Bull. 40, 1680–1689.CrossRefGoogle Scholar
  25. 25.
    I. Dhouib, H. Feki, P. Guionneau, T. Mhiri, and Z. Elaoud (2014). Spectrochim. Acta. A 131, 274–281.CrossRefGoogle Scholar
  26. 26.
    K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A; Theory and Applications in Inorganic Chemistry (Wiley, New York, 1986), p. 202.Google Scholar
  27. 27.
    M. Karabacak, Z. Cinar, M. Kurt, S. Sudha, and N. Sundaraganesan (2012). Spectrochim. Acta. A 85, 179–189.CrossRefGoogle Scholar
  28. 28.
    G. Varsanyi Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vols. I and II (Academic Kiaclo, Budapest, 1973).Google Scholar
  29. 29.
    L. J. Bellamy The Infrared Spectra of Complex Molecules, 3rd ed (Wiley, New York, 1975).CrossRefGoogle Scholar
  30. 30.
    H. Alyar, Z. Kantarci, M. Bahat, and E. Kasap (2007). J. Mol. Struct. 834, 516–520.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sami Soukrata
    • 1
    Email author
  • Thameur Dammak
    • 2
  • Tahar Mhiri
    • 1
  • Mohamed Belhouchet
    • 1
  1. 1.Laboratory of Solid State, Faculty of SciencesUniversity of SfaxSfaxTunisia
  2. 2.Laboratory of Applied Physics, Faculty of SciencesUniversity of SfaxSfaxTunisia

Personalised recommendations