Journal of Cluster Science

, Volume 29, Issue 6, pp 951–958 | Cite as

Cyan-Blue Luminescence and Antiferromagnetic Coupling of CN-Bridged Tetranuclear Complex Based on Manganese(III) Schiff Base and Hexacyanoferrate(III)

  • Adem Donmez
  • Mustafa Burak Coban
  • Hulya KaraEmail author
Original Paper


A new tetranuclear cyanide-bridged MnIII–FeIII complex based on manganese(III) Schiff base and hexacyanoferrate(III) units, [Mn(L)(MeOH)2][{Mn(L)}{Fe(CN)6}{Mn(L)(MeOH)}].2MeOH, [H2L = N,N′-bis(2-hydroxy-1-naphthalidenato)-1,2-diaminopropane] (1), has been synthesized and characterized by elemental analysis, UV–Vis, FT-IR, PXRD, single crystal X-ray analyses, magnetic and photoluminescence measurements. Complex 1 consist of one trinuclear cyanido-bridged anion, in which [Fe(CN)6]3− anion bridge [Mn(L)]+ and Mn(L)(MeOH)}]+ cations via two C≡N groups in the cis positions, and also one isolated manganese [Mn(L)(MeOH)2]+ cation. DC magnetic susceptibility and magnetization studies showed that complex 1 indicates an antiferromagnetic coupling between low-spin Fe(III) and high-spin Mn(III) through the cyanide bridges. In addition, the complex 1 displays a strong cyan-blue luminescence emission in the solid state condition at room temperature. This behavior might be seen easily from the chromaticity diagram. Thus, the complex may be a good promising cyan-blue OLED developing electroluminescent materials for flatted or curved panel display applications due to the fact that it has such features.


Magnetism Photoluminescence X-ray analyses Cyano-bridged MnIII–FeIII compound 



The authors are grateful to the Research Funds of Muğla Sıtkı Koçman University (BAP–2018/008) for the financial support and Balikesir University, Science and Technology Application and Research Center (BUBTAM) for the use of the Photoluminescence Spectrometer. The authors are also very grateful to Prof. Dr. Andrea Caneschi (Laboratory of Molecular Magnetism, Department of Chemistry, University of Florence) for the use of SQUID magnetometer and helpful suggestions.

Supplementary material

10876_2018_1404_MOESM1_ESM.docx (624 kb)
Supplementary material 1 (DOCX 624 kb)


  1. 1.
    E. Gungor, M. B. Coban, H. Kara, and Y. Acar (2018). J. Clust. Sci. 29, 533.CrossRefGoogle Scholar
  2. 2.
    E. Otgonbaatar, M. C. Chung, K. Umakoshi, and C. H. Kwak (2015). J. Nanosci. Nanotechnol. 15, 1389.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    S. Bibi, S. Mohamad, N. Suhana, A. Manan, J. Ahmad, M. Afzal, S. Mei, B. M. Yamin, and S. N. A. Halim (2017). J. Mol. Struct. 1141, 31.CrossRefGoogle Scholar
  4. 4.
    B. Sherino, S. Mohamad, N. Suhana, A. Manan, H. Tareen, B. M. Yamin, and S. N. A. Halim (2017). Transit. Met. Chem. 43, 53.CrossRefGoogle Scholar
  5. 5.
    S. Chooset, A. Kantacha, K. Chainok, and S. Wongnawa (2018). Inorg. Chim. Acta. 471, 493.CrossRefGoogle Scholar
  6. 6.
    M. B. Coban, E. Gungor, H. Kara, U. Baisch, and Y. Acar (2018). J. Mol. Struct. 1154, 579.CrossRefGoogle Scholar
  7. 7.
    J. E. Jee and C. H. Kwak (2013). Inorg. Chem. Commun. 33, 95.CrossRefGoogle Scholar
  8. 8.
    S. Kongchoo, K. Chainok, A. Kantacha, and S. Wongnawa (2017). J. Chem. Sci. 129, 431.CrossRefGoogle Scholar
  9. 9.
    M. Layek, M. Ghosh, S. Sain, M. Fleck, P. Thomas, S. Jegan, J. Ribas, and D. Bandyopadhyay (2013). J. Mol. Struct. 1036, 422.CrossRefGoogle Scholar
  10. 10.
    S. Mandal, A. Kumar, M. Fleck, G. Pilet, J. Ribas, and D. Bandyopadhyay (2010). Inorg. Chim. Acta. 363, 2250.CrossRefGoogle Scholar
  11. 11.
    X. Zhou, B. Yu, Y. Guo, X. Tang, H. Zhang, and W. Liu (2010). Inorg. Chem. 49, 4002.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Z. Yang, M. She, J. Zhang, X. Chen, Y. Huang, H. Zhu, P. Liu, J. Li, and Z. Shi (2013). Sensors Actuators B. Chem. 176, 482.CrossRefGoogle Scholar
  13. 13.
    S. M. Kim, J. Kim, D. Shin, Y. K. Kim, and Y. Ha (2001). Bull. Korean Chem. Soc. 22, 743.Google Scholar
  14. 14.
    L. Yan, R. Li, W. Shen, and Z. Qi (2018). J. Lumin. 194, 151.CrossRefGoogle Scholar
  15. 15.
    H. Kara, A. Karaoglu, Y. Yahsi, E. Gungor, A. Caneschi, and L. Sorace (2012). CrystEngComm 14, 7320.CrossRefGoogle Scholar
  16. 16.
    E. Gungor, Y. Yahsi, H. Kara, and A. Caneschi (2015). CrystEngComm 17, 3082.CrossRefGoogle Scholar
  17. 17.
    M. Zhang, Y. Zhang, C. Yang, and Q. Wang (2016). Eur. J. Inorg. Chem. 1, 3620.CrossRefGoogle Scholar
  18. 18.
    D. Pinkowicz, H. I. Southerland, C. Avendan, A. Prosvirin, C. Sanders, W. Wernsdorfer, K. S. Pedersen, J. Dreiser, R. Cle, J. Nehrkorn, G. G. Simeoni, A. Schnegg, K. Holldack, and K. R. Dunbar (2015). J. Am. Chem. Soc. 137, 14406.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    V. A. Kopotkov, D. V. Korchagin, A. D. Talantsev, R. B. Morgunov, and E. B. Yagubskii (2016). Inorg. Chem. Commun. 64, 27.CrossRefGoogle Scholar
  20. 20.
    U. Erkarslan, G. Oylumluoglu, M. B. Coban, E. Öztürk, and H. Kara (2016). Inorg. Chim. Acta. 445, 57.CrossRefGoogle Scholar
  21. 21.
    O. Kahn Molecular Magnetism (VCH Publishers, New York, 1993).Google Scholar
  22. 22.
    A. Karakuş, A. Elmalı, H. Ünver, H. Kara, and Y. Yahsi (2006). Z. Naturforsch. 61b, 968.CrossRefGoogle Scholar
  23. 23.
    E. Gungor and H. Kara (2011). Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 82, 217.CrossRefGoogle Scholar
  24. 24.
    Bruker APEX2, SAINT and SADABS (Bruker AXS Inc., Madison, Wisconsin, USA, 2007).Google Scholar
  25. 25.
    G. M. Sheldrick SADABS (University of Göttingen, Germany, 2008).Google Scholar
  26. 26.
    G. M. Sheldrick (2008). Acta Crystallogr. A 64, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    G. M. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 3.CrossRefGoogle Scholar
  28. 28.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
  29. 29.
    A. L. Spek (2009). Acta Crystallogr. D. Biol. Crystallogr. 65, 148.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    A. W. Addison, T. N. Rao, J. Reedik, J. van Rijn, and G. C. Verschoor (1984). J. Chem. Soc. Dalton Trans. 7, 1349.CrossRefGoogle Scholar
  31. 31.
    C. Kocak, G. Oylumluoglu, A. Donmez, M. B. Coban, U. Erkarslan, M. Aygun, and H. Kara (2017). Acta Cryst. C73, 414.Google Scholar
  32. 32.
    A. Donmez, M. B. Coban, C. Kocak, G. Oylumluoglu, U. Baisch, and H. Kara (2017). Mol. Cryst. Liq. Cryst. 652, 213.CrossRefGoogle Scholar
  33. 33.
    W. Ni, Z. Ni, A. Cui, X. Liang, and H. Kou (2007). Inorg. Chem. 46, 22.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Y. Yahsi, E. Gungor, M. B. Coban, and H. Kara (2016). Mol. Cryst. Liq. Cryst. 637, 67.CrossRefGoogle Scholar
  35. 35.
    A. Donmez, G. Oylumluoglu, M. B. Coban, C. Kocak, M. Aygun, and H. Kara (2017). J. Mol. Struct. 1149, 569.CrossRefGoogle Scholar
  36. 36.
    M. B. Coban (2018). J. Mol. Struct. 1162, 109.CrossRefGoogle Scholar
  37. 37.
    M. B. Coban (2017). J. BAUN Inst. Sci. Technol. 19, 7.Google Scholar
  38. 38.
    M. B. Coban, U. Erkarslan, G. Oylumluoglu, M. Aygun, and H. Kara (2016). Inorg. Chim. Acta. 447, 87.CrossRefGoogle Scholar
  39. 39.
    X. Feng, Y. Feng, J. J. Chen, S. Ng, L. Wang, and J. Guo (2015). Dalton Trans. 44, 804.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    H. Miyasaka, N. Matsumoto, N. Re, E. Gallo, and C. Floriani (1997). Inorg. Chem. 36, 670.CrossRefGoogle Scholar
  41. 41.
    H. Y. Kwak, D. W. Ryu, J. W. Lee, J. H. Yoon, H. C. Kim, E. K. Koh, J. Krinsky, and C. S. Hong (2010). Inorg. Chem. 49, 4632.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Molecular Nano-Materials LaboratoryMugla Sitki Kocman UniversityMuglaTurkey
  2. 2.Scientific Research Projects Coordination UnitMugla Sitki Kocman UniversityMuglaTurkey
  3. 3.Department of PhysicsBalikesir UniversityBalikesirTurkey
  4. 4.Center of Sci and Tech App and ResearchBalikesir UniversityBalikesirTurkey

Personalised recommendations