Phytosynthesized Gold Nanoparticles-Bacillus thuringiensis (Bt–GNP) Formulation: A Novel Photo Stable Preparation Against Mosquito Larvae

  • Satish V. Patil
  • Chandrashekhar D. Patil
  • Chandrakant P. Narkhede
  • Rahul K. Suryawanshi
  • Sunil H. Koli
  • Laxmikant Shinde
  • Bhavana V. Mohite
Original Paper
  • 33 Downloads

Abstract

It is well-known that the sunlight irradiation damages the spores and toxin produced by Bacillus thuringiensis (Bt), which leads to loss of their insecticidal activity. This photodegradation problem is addressed in the present investigation by use of green phytosynthesized gold nanoparticles (GNP) as a photoprotectant. The efficiency of Bt with GNP before and after exposing to sunlight was evaluated against the larvae of Aedes aegypti and Anopheles subpictus. The bioassay results focused that after sunlight irradiation the Bt significantly lose their activity for Ae. aegypti (23.13%) and An. subpictus (27.08%). Although the individual GNP showed very less activity against tested larvae, it was observed that in combination with Bt it significantly enhances activity and consequently reduced the LC50 of Bt–GNP. Similarly, even after irradiation of Bt–GNP formulation, the enhanced activity was found against Ae. aegypti (23.10%) and An. subpictus (27.24%). Henceforth in the case of Bt–GNP formulation, the GNP it was not only protecting the Bt from sunlight but enhances its larvicidal potential. The interactions between the GNP and Bt toxin which might be the main reason to protect the Bt from sunlight and can help to locate the Bt toxin at the target site.

Keywords

Bacillus thuringiensis GNP Aedes aegypti Anopheles subpictus Photoprotection 

Notes

Acknowledgements

Authors are thankful to University Grant Commission and Department of Science and Technology, New Delhi for financial support to make research facility at Department of School of Life Sciences, under the UGC-SAP and DST-FIST program. Authors also acknowledge that this work is a small effort in vector control in response to inspiration created by Dr. AP Dash, N Valecha, Dr. Anvikar and A Kumar. Article “Malaria in India: challenges and opportunities”. J Biosci. 2008, 33(4):583–92.

References

  1. 1.
    G. Benelli and M. F. Duggan (2018). Acta Tropica 182, 80–91.CrossRefGoogle Scholar
  2. 2.
    G. Benelli (2015). Parasitol. Res. 114, 2801–2805.CrossRefGoogle Scholar
  3. 3.
    A. De, R. Bose, A. Kumar, and S. Mozumdar, Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles (Springer, 2014), pp. 5–6.Google Scholar
  4. 4.
    A. Bravo, S. S. Gill, and M. Soberón, in Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (eds.), In Comprehensive Molecular Insect Science (Elsevier, 2005), pp. 175–206.Google Scholar
  5. 5.
    G. Benelli (2018). Acta Tropica 178, 73–80.CrossRefGoogle Scholar
  6. 6.
    R. Marzban (2012). J. Biopestic. 5, 144.Google Scholar
  7. 7.
    G. Benelli, F. Maggi, M. Govindarajan, L. Cappellacci, A. A. Alarfaj, R. Pavela, B. Vaseeharan, S. Kumar, J.-S. Hwang, K. Murugan, A. Hofer, R. Petrelli, M. R. Youssefi, and A. Higuchi (2017). Environ. Sci. Pollut. Res..  https://doi.org/10.1007/s11356-017-9752-4.Google Scholar
  8. 8.
    L. A. Lacey and S. Singer (1982). Mosq. News. 42, 537–543.Google Scholar
  9. 9.
    R. L. Groves and M. V. Meisch (1996). J. Am. Mosq. Control. Assoc. 12, 220–224.Google Scholar
  10. 10.
    World Health Organization (2009). Global insecticide use for vector-borne disease control. p. 4.Google Scholar
  11. 11.
    H. van den Berg, M. Zaim, R. S. Yadav, A. Soares, B. Ameneshewa, A. Mnzava, J. Hii, A. P. Dash, and M. Ejov (2012). Environ. Health. Perspect. 120, 577–582.CrossRefGoogle Scholar
  12. 12.
    M. Pusztai, P. Fast, L. Gringorten, H. Kaplan, T. Lessard, and P. R. Carey (1991). J. Biochem. 273, 43–47.CrossRefGoogle Scholar
  13. 13.
    M. Pozsgay, P. Fast, H. Kaplan, and P. R. Carey (1987). J. Inv. Pathol. 50, 246–253.CrossRefGoogle Scholar
  14. 14.
    A. Paul, L. C. Harrington, L. Zhang, and J. G. Scott (2005). J. Am. Mosq. Control. Assoc. 21, 305–309.CrossRefGoogle Scholar
  15. 15.
    S. Boyer, M. Paris, S. Jego, G. Lemperiere, and P. Ravanel (2012). Biol. Control. 62, 75–81.CrossRefGoogle Scholar
  16. 16.
    H. F. Owusu, N. Chitnis, and P. Müller (2017). Scientific. Reports. 7, 3667.CrossRefGoogle Scholar
  17. 17.
    J. Hemingway and H. Ranson (2000). Annu. Rev. Entomol. 45, 371–391.CrossRefGoogle Scholar
  18. 18.
    M. C. Daniel and D. Astruc (2004). Chem. Rev. 104, 293–346.CrossRefGoogle Scholar
  19. 19.
    Z. Cheng, A. Al Zaki, J. Z. Hui, V. R. Muzykantov, and A. Tsourkas (2012). Science 338, 903–910.CrossRefGoogle Scholar
  20. 20.
    S. Rana, A. Bajaj, R. Mout, and V. M. Rotello (2012). Adv. Drug. Deliv. Rev. 64, 200–216.CrossRefGoogle Scholar
  21. 21.
    H. P. Borase, C. D. Patil, R. K. Suryawanshi, S. H. Koli, B. V. Mohite, Giovanni Benelli, and S. V. Patil (2017). Bioprocess Biosyst. Eng. 40, 1437–1446.CrossRefGoogle Scholar
  22. 22.
    V. Karthika, A. Arumugam, K. Gopinath, P. Kaleeswarran, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B, Biol. 167, 189–199.CrossRefGoogle Scholar
  23. 23.
    P. Das, B. Chetia, R. Prasanth, J. Madhavan, G. Singaravelu, G. Benelli, and K. Murugan (2017). J. Clust. Sci. 28, 2269–2277.CrossRefGoogle Scholar
  24. 24.
    N. Suganthy, V. S. Ramkumar, A. Pugazhendhi, G. Benelli, and G. Archunan (2017). Environ. Sci. Pollut. Res..  https://doi.org/10.1007/s11356-017-9789-4.Google Scholar
  25. 25.
    C. Balalakshmi, K. Gopinath, M. Govindarajan, R. Lokesh, A. Arumugam, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B, Biol. 173, 598–605.CrossRefGoogle Scholar
  26. 26.
    N. S. Alharbi, K. Bhakyaraj, M. Govindarajan, S. Mohan, S. Kadaikunnan, K. Gopinath, S. Kumuraguru, P. Kaleeswarran, J. M. Khaled, and G. Benelli (2017). J. Clust. Sci. 28, 507–517.CrossRefGoogle Scholar
  27. 27.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1–2.CrossRefGoogle Scholar
  28. 28.
    J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, D. Dinesh, P. M. Kumar, B. Chandramohan, U. Suresh, R. Rajaganesh, and M. S. Alsalhi (2016). Environ. Sci. Pollut. Res. 23, 7543–7558.CrossRefGoogle Scholar
  29. 29.
    C. D. Patil, H. P. Borase, R. K. Suryawanshi, and S. V. Patil (2016). Enzym. Microb. Technol. 92, 18–25.CrossRefGoogle Scholar
  30. 30.
    H. P. Borase, C. D. Patil, R. B. Salunkhe, R. K. Suryawanshi, B. K. Salunke, and S. V. Patil (2014). Int. J. Cosmet. Sci. 36, 571–578.CrossRefGoogle Scholar
  31. 31.
    G. Benelli and H. Mehlhorn (2016). Parasitol. Res. 115, 1747–1754.CrossRefGoogle Scholar
  32. 32.
    World Health Organization (1981). Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides.Google Scholar
  33. 33.
    C. D. Patil, S. V. Patil, B. K. Salunke, and R. B. Salunkhe (2011). Parasitol. Res. 109, 1179–1187.CrossRefGoogle Scholar
  34. 34.
    W. W. Abbott (1925). J. Econ. Entomol. 18, 265–267.CrossRefGoogle Scholar
  35. 35.
    K. Murugan, G. Benelli, C. Panneerselvam, J. Subramaniam, T. Jeyalalitha, D. Dinesh, M. Nicoletti, J.-S. Hwang, U. Suresh, and P. Madhiyazhagan (2015). Exp. Parasitol. 153, 129–138.CrossRefGoogle Scholar
  36. 36.
    S. Raj, S. Jose, U. Sumod, and M. Sabitha (2012). J. Pharm. Bioallied Sci. 4, 186–193.CrossRefGoogle Scholar
  37. 37.
    H. P. Borase, C. D. Patil, R. B. Salunkhe, R. K. Suryawanshi, B. S. Kim, V. A. Bapat, and S. V. Patil (2015). Appl. Biochem. Biotechnol. 175, 3479–3493.CrossRefGoogle Scholar
  38. 38.
    C. D. Patil, R. K. Suryawanshi, H. P. Borase, C. P. Narkhede, B. K. Salunke, and S. V. Patil (2015). Nat. Product. Res. 29, 2350–2354.CrossRefGoogle Scholar
  39. 39.
    D. E. Pinnock, R. J. Brand, and J. E. Milstead (1971). J. Invert. Pathol. 18, 405–411.CrossRefGoogle Scholar
  40. 40.
    E. S. Raun, G. R. Sutter, and M. A. Revelo (1966). J. Invert. Pathol. 8, 365–375.CrossRefGoogle Scholar
  41. 41.
    V. M. Griego and K. D. Spence (1978). Appl. Environ. Microbiol. 35, 906–910.Google Scholar
  42. 42.
    Y. Chen, Y. Deng, J. Wang, J. Cai, and G. Ren (2004). J. Gen. Appl. Microbiol. 50, 183–188.CrossRefGoogle Scholar
  43. 43.
    P. Bailey, G. Baker, and G. Caon (1996). Austral Entomol. 35, 297–302.CrossRefGoogle Scholar
  44. 44.
    E. Cohen, H. Rozen, T. Joseph, S. Braun, and L. Margulies (1991). J. Invert. Pathol. 57, 343–351.CrossRefGoogle Scholar
  45. 45.
    O. N. Morris (1983). Can. Ent. 115, 1215–1227.CrossRefGoogle Scholar
  46. 46.
    L. Margulies, H. Rozen, and E. Cohen (1985). Nature 315, 658–659.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Satish V. Patil
    • 1
    • 2
  • Chandrashekhar D. Patil
    • 1
    • 3
  • Chandrakant P. Narkhede
    • 1
  • Rahul K. Suryawanshi
    • 1
    • 4
  • Sunil H. Koli
    • 1
  • Laxmikant Shinde
    • 5
  • Bhavana V. Mohite
    • 1
  1. 1.School of Life SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.North Maharashtra Microbial Culture Collection Centre (NMCC)North Maharashtra UniversityJalgaonIndia
  3. 3.Iceland Research Centre and Observatory of the EnvironmentUniversite de Perpignan UPVD CRIOBEPerpignanFrance
  4. 4.Department of Ophthalmology and Visual SciencesUniversity of IllinoisChicagoUSA
  5. 5.JES’ R. G. Bagdia Arts, S. B. Lakhotia Commerce, and R. Benzoji Science CollegeJalnaIndia

Personalised recommendations