Journal of Cluster Science

, Volume 30, Issue 2, pp 343–350 | Cite as

Evaluation of Chemical and Green Synthesized Iron Oxide Nanoparticles’ Associated Renal Toxicity in Different Experimental Models: A Comparative Study

  • Ansari Mahalakshmi
  • Gino A. KurianEmail author
Original Paper


Magnetic nanoparticles occupy a significant class of inorganic nanoparticles with its very promising application in biosensors and bio-imaging. Physical and chemical methods have been used conventionally to prepare magnetic nanoparticles. However, these methods have its own limitations, which redirected recent research towards safe, clean and eco-friendly green synthesis approach. In our study, green magnetic iron oxide nanoparticles (FeNP DG) were prepared by using aqueous Desmodium gangeticum root extract as a reducing as well as a capping agent. Nanoparticles used in different biological milieu has to be explored for their toxicity before its application. Thus prepared nanoparticles were evaluated for its nephrotoxicity in Wistar rats (100 mg/kg b.wt), in renal epithelial cells, LLC PK1 (1 mg/ml) and isolated mitochondria (0.25, 0.5, 1 mg/ml) and compared it with the conventionally prepared iron oxide nanoparticles (FeNP Chem). Our study demonstrate that chemically prepared FeNPs are toxic to kidney and its epithelial cells.On the other hand, when the same nanoparticles were prepared by green route (FeNP DG) exhibited minimum toxicity measured via the renal markers in blood and urine along with cytotoxicity assay in LLC PK1 cells. But at mitochondrial level, both FeNP Chem and FeNP DG were found to be toxic to the organelle.


Iron oxide nanoparticles Nephrotoxicity Renal epithelial cells Mitochondria toxicity Biological preparation 



The authors sincerely thank Vice Chancellor, SASTRA University. This study was partly supported by grants from the Department of Science and Technology (INSPIRE), New Delhi, India (No: DST/INSPIRE Fellowship/2013/326). We would like to thank Dr. C David Raj for his assistance during animal experiments.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    K. Andreas, R. Georgieva, M. Ladwig, S. Mueller, M. Notter, M. Sittinger, and J. Ringe (2012). Biomaterials 33, (18), 4515.Google Scholar
  2. 2.
    S. C. McBain, H. H. Yiu, and J. Dobson (2008). Int. J. Nanomed. 3, (2), 169.Google Scholar
  3. 3.
    M. K. Yu, Y. Y. Jeong, J. Park, S. Park, J. W. Kim, J. J. Min, K. Kim, and S. Jon (2008). Angew. Chem. Int. Ed. Engl. 47, (29), 5362.Google Scholar
  4. 4.
    N. A. Frey, S. Peng, K. Cheng, and S. Sun (2009). Chem. Soc. Rev. 38, (9), 2532.Google Scholar
  5. 5.
    M. Mohapatra and S. Anand (2010). Int. J. Eng. Sci. Technol. 2, (8), 127.Google Scholar
  6. 6.
    A. Afkhami and R. Moosavi (2010). J. Hazard. Mater. 174, (1), 398.Google Scholar
  7. 7.
    M. Tarantash, H. Nosrati, H. Kheiri Manjili, and A. Baradar Khoshfetrat (2018). Drug Dev. Ind. Pharm. 44, (11), 1895–1903.Google Scholar
  8. 8.
    H. Nosrati, M. Salehiabar, H. Kheiri Manjili, S. Davaran, and H. Danafar (2018). Drug Dev. Ind. Pharm. 44, (10), 1668–1678.Google Scholar
  9. 9.
    M. Salehiabar, H. Nosrati, E. Javani, F. Aliakbarzadeh, H. K. Manjili, S. Davaran, and H. Danafar (2018). Int. J. Biol. Macromol. 115, 83–89.Google Scholar
  10. 10.
    H. Nosrati, A. Mojtahedi, H. Danafar, and H. Kheiri Manjili (2018). J. Biomed. Mater. Res. A 106, (6), 1646–1654.Google Scholar
  11. 11.
    H. Nosrati, M. Salehiabar, E. Attari, S. Davaran, H. Danafar, and H. K. Manjili (2018). Appl. Organomet. Chem. 32, (2), e4069.Google Scholar
  12. 12.
    M. Mahmoudi, S. Laurent, M. A. Shokrgozar, and M. Hosseinkhani (2011). ACS Nano 5, (9), 7263.Google Scholar
  13. 13.
    N. Singh, G. J. Jenkins, B. C. Nelson, B. J. Marquis, T. G. Maffeis, A. P. Brown, P. M. Williams, C. J. Wright, and S. H. Doak (2012). Biomaterials 33, (1), 163.Google Scholar
  14. 14.
    M. Sundrarajan and S. Gowri (2011). Chalcogenide Lett. 8, (8), 447.Google Scholar
  15. 15.
    G. Scarano and E. Morelli (2002). Biometals 15, (2), 145.Google Scholar
  16. 16.
    A. Meyyappan, A. Shakila Banu, and G. A. Kurian (2015). Int. J Pharm. Pharm. Sci. 7, (13), 70.Google Scholar
  17. 17.
    C. G. Fraga, B. E. Leibovitz, and A. L. Tappel (1988). Free Rad. Biol. Med. 4, 155.Google Scholar
  18. 18.
    J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra (1973). Science 179, 588.Google Scholar
  19. 19.
    B. Chance and N. Oshino (1971). Biochem. J. 122, 225.Google Scholar
  20. 20.
    C. W. Cheng, L. Y. Chen, C. W. Chou, and J. Y. Liang (2015). J. Photochem. Photobiol., B 148, 262.Google Scholar
  21. 21.
    S. Morgenstern, R. Flor, G. Kessler, and B. Klein (1965). Anal. Biochem. 13, (1), 149.Google Scholar
  22. 22.
    T. Mosmann (1983). J. Immunol. Methods 65, 55.Google Scholar
  23. 23.
    G. A. Kurian, N. Yagnesh, R. S. Kishan, and J. Paddikkala (2008). J. Pharm. Pharmacol. 60, (4), 523.Google Scholar
  24. 24.
    W. P. Zeijlemaker, D. V. Dervartanian, C. Veeger, and E. C. Slater (1969). Biochim. Biophys. Acta 178, 213.Google Scholar
  25. 25.
    M. J. Wimmer and J. H. Harrison (1975). J. Biol. Chem. 250, 8768.Google Scholar
  26. 26.
    M. E. Cerdan, M. A. Serra, N. Lopez-Moratalla, and E. Santiago (1987). Rev. Esp. Fisiol. 43, 13.Google Scholar
  27. 27.
    M. Alagumira, A. Shakila Banu, and K. A. Gino (2015). Int. J. Pharm. Pharm. Sci. 7, (1), 70.Google Scholar
  28. 28.
    M. I. Khan, A. Mohammad, G. Patil, S. A. Naqvi, L. K. Chauhan, and I. Ahmad (2012). Biomaterials 33, (5), 1477.Google Scholar
  29. 29.
    G. A. Kurian and J. Paddikkala (2009). Indian J. Exp. Biol. 47, (2), 129.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Vascular Biology Laboratory, School of Chemical and BiotechnologySASTRA UniversityThanjavurIndia

Personalised recommendations