Advertisement

Oriented Synthesis of Chair-Shaped Ln3 + Ln3 Clusters and Magnetic Properties

  • Kai-Qiang Mo
  • Cong Zhang
  • Hua-Hong ZouEmail author
  • Hai-Ling Wang
  • Yan-Cheng Liu
  • Fu-Pei Liang
Original Paper
  • 17 Downloads

Abstract

2-Hydroxy-3-methoxybenzaldehyde (L1), 3-amino-1,2-propanediol (L2), trimethylacetic acid (pivalate) and Ln(NO3)3·6H2O were reacted at 80 °C to obtain two hexanuclear clusters [Ln6(HL)2(μ3-OH)2(μ3-OCH3)2(C5H9O2)10(CH3OH)2]·X (Ln = Gd (1, X = 4CH3OH), Er (2)), respectively. The aldehyde group of ligand HL1 is coupled with the amino group of HL2 to obtain 2-(2,3-dihydroxpropyliminomethyl)6-methoxyphenol (H3L). The coordination mode adopted by ligand L3− is μ4-L-k8O1,O2:O2,N1,O3:O3:O3,O4. Trimethylacetic acid adopts three different coordination modes in the six-nuclear cluster. The metal center Ln1 is in the N1O8 coordination environment, and both Ln2 and Ln3 are in the O8 coordination environment. Each of the hexanuclear complex is constructed with Ln3 triangular motifs as building blocks, and the six Ln(III) ions are arranged in a chair-shaped conformation. In magnetization studies of 1 exhibited a large magnetocaloric effect of 20.0 J kg−1 K−1 at 4 K for ΔH = 5 T.

Keywords

Schiff-base ligand Chair-shaped Hexanuclear complex Magnetocaloric effect 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21601038 and 51572050), Guangxi Natural Science Foundation (2016GXNSFAA380085 and 2015GXNSFDA139007).

Supplementary material

10876_2018_1490_MOESM1_ESM.docx (169 kb)
Supplementary material 1 (DOCX 168 kb)

References

  1. 1.
    V. K. Pecharsky and K. A. Gschneidner Jr. (1997). Phys. Rev. Lett. 78, 4494.CrossRefGoogle Scholar
  2. 2.
    O. Gutfleisch, M. A. Willard, E. Brück, C. H. Chen, S. G. Sankar, and J. P. Liu (2011). Adv. Mater. 23, 821.CrossRefGoogle Scholar
  3. 3.
    O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer (2002). Nature 415, 150.CrossRefGoogle Scholar
  4. 4.
    V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, and V. V. Khovaylo (2012). Phys. Rev. B 85, 014430.CrossRefGoogle Scholar
  5. 5.
    R. Sessoli (2012). Angew. Chem. Int. Ed. 51, 43.CrossRefGoogle Scholar
  6. 6.
    M. Evangelisti and E. K. Brechin (2010). Dalton Trans. 39, 4672.CrossRefGoogle Scholar
  7. 7.
    J. L. Liu, Y. C. Chen, F. S. Guo, and M. L. Tong (2014). Coord. Chem. Rev. 281, 26.CrossRefGoogle Scholar
  8. 8.
    F. S. Guo, Y. C. Chen, J. L. Liu, J. D. Dong Leng, Z. S. Meng, P. Vrábel, M. Orendáč, and M. L. Tong (2012). Chem. Commun. 48, 12219.CrossRefGoogle Scholar
  9. 9.
    M. Manoli, R. D. L. Johnstone, S. Parsons, M. Murrie, M. Affronte, M. Evan-gelisti, and E. K. Brechin (2007). Angew. Chem. Int. Ed. 46, 4456.CrossRefGoogle Scholar
  10. 10.
    M. Manoli, A. Collins, S. Parsons, A. Candini, M. Evangelisti, and E. K. Brechin (2008). J. Am. Chem. Soc. 130, 11129.CrossRefGoogle Scholar
  11. 11.
    M. Evangelisti, A. Candini, M. Affronte, E. Pasca, L. J. de Jongh, R. T. W. Scott, and E. K. Brechin (2009). Phys. Rev. B 79, 104414.CrossRefGoogle Scholar
  12. 12.
    R. Pełka, P. Konieczny, P. M. Zieliński, T. Wasiutyński, Y. Miyazaki, A. Inaba, D. Pinkowicz, and B. Sieklucka (2014). J. Magn. Magn. Mater. 354, 359.CrossRefGoogle Scholar
  13. 13.
    G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. Innes, D. Collison, and M. Evangelisti (2013). Adv. Mater. 25, 4653.CrossRefGoogle Scholar
  14. 14.
    G. Lorusso, M. A. Palacios, G. S. Nichol, E. K. Brechin, O. Roubeau, and M. Evangelisti (2012). Chem. Commun. 48, 7592.CrossRefGoogle Scholar
  15. 15.
    Z. Liu, H. Zou, R. Wang, M. Chen, and F. Liang (2018). RSC Adv. 8, 767.CrossRefGoogle Scholar
  16. 16.
    Y.-J. Li, Y.-L. Wang, and Q.-Y. Liu (2007). Inorg. Chem. 56, 2159.CrossRefGoogle Scholar
  17. 17.
    Y.-L. Wang, C.-B. Han, Y.-Q. Zhang, Q.-Y. Liu, C.-M. Liu, and S.-G. Yin (2016). Inorg. Chem. 55, 5578.CrossRefGoogle Scholar
  18. 18.
    R.-P. Li, Q.-Y. Liu, Y.-L. Wang, C.-M. Liu, and S.-J. Liu (2017). Inorg. Chem. Front. 4, 1149.CrossRefGoogle Scholar
  19. 19.
    Z. Zhu, X. Ma, H. Wang, H. Zou, K. Mo, Y. Zhang, Q. Yang, B. Li, and F. Liang (2018). Inorg. Chem. Front. 5, 3155.CrossRefGoogle Scholar
  20. 20.
    J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli, R. Sessoli, and A. K. Powell (2006). Angew. Chem. Int. Ed. 45, 1729.CrossRefGoogle Scholar
  21. 21.
    L. Ungur, S.-Y. Lin, J. Tang, and L. F. Chibotaru (2014). Chem. Soc. Rev. 43, 6894.CrossRefGoogle Scholar
  22. 22.
    L. F. Chibotaru, L. Ungur, and A. Soncini (2008). Angew. Chem. Int. Ed. 47, 4126.CrossRefGoogle Scholar
  23. 23.
    G. Sheldrick (2015). Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 71, 3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal UniversityGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations