Advertisement

Prediction of Second-Order Nonlinear Optical Properties of D–π–A Compounds Containing Novel Fluorene Derivatives: A Promising Route to Giant Hyperpolarizabilities

  • Muhammad Usman Khan
  • Muhammad IbrahimEmail author
  • Muhammad KhalidEmail author
  • Ataualpa Albert Carmo Braga
  • Sarfraz Ahmed
  • Ayesha Sultan
Original Paper
  • 31 Downloads

Abstract

Herein, first attempt has been made to utilize fluorene-based dye-sensitized solar cell (DSSCs) dye JK-201 as potential nonlinear optical (NLO) material and for the theoretical designing of novel NLO chromophores JK-D1–JK-D12. DFT/TDDFT calculations were performed to compute the effect of π-linkers and acceptors-steered modulation on electronic, photophysical and NLO properties of JK-201 and JK-D1–JK-D12. Results illustrate that computed λmax (484.74 nm) and experimentally calculated λmax (481 nm) of JK-201 was found in good agreement. Maximum red shifted absorption spectrum was observed in JK-D12 with 599.38 nm. JK-D1–JK-D12 showed narrow energy gap and broader absorption spectrum as compared to JK-201. NBO analysis confirmed the formation of charge separation state due to robust range of electrons/charge transfer from donor to acceptor via π-bridge. Giant NLO response was observed in all compounds. Particularly, JK-D12 displayed surprisingly large 〈α〉 and βtot computed 1376.74 (a.u.) and 405,731.84 (a.u.) respectively. Although literature is flooded with D–π–A compounds investigated for their DSSCs properties, but research reports on their NLO properties and utilization as NLO materials are completely deserted. Our research will open new horizons to explore DSSCs materials for NLO applications. This theoretical framework also exposed that fluorene-substituted chromophores are excellent NLO candidates for modern hi-tech applications.

Graphical Abstract

Keywords

NLO response properties D–π–A organic chromophores Density functional theory Molecular modeling π-Conjugated linkers Acceptor units 

Notes

Acknowledgments

Ataualpa A. C. Braga, (Grants # 2011/07895-8, 2015/01491-3 and 2014/25770-6) is thankful to Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support. AACB (Grant 309715/2017-2) also thanks the Brazilian National Research Council (CNPq) for financial support and fellowships. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

Associated Content

Optimized Cartesian coordinates of our studied compounds are available in supporting information file.

Supplementary material

10876_2018_1489_MOESM1_ESM.docx (79 kb)
Supplementary material 1 (DOCX 79 kb)

References

  1. 1.
    M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski, Non-linear optical properties of matter (Springer, New York, 2006).Google Scholar
  2. 2.
    M. Akram, M. Adeel, M. Khalid, M. N. Tahir, M. U. Khan, M. A. Asghar, M. A. Ullah, and M. Iqbal (2018). J. Mol. Struct. 1160, 129.Google Scholar
  3. 3.
    M. S. Ahmad, M. Khalid, M. A. Shaheen, M. N. Tahir, M. U. Khan, A. A. C. Braga, and H. A. Shad (2017). J. Phys. Chem. Solids 115, 265.Google Scholar
  4. 4.
    M. Shahid, M. Salim, M. Khalid, M. N. Tahir, M. U. Khan, and A. A. C. Braga (2018). J. Mol. Struct. 1161, 66.Google Scholar
  5. 5.
    Z. Peng and L. Yu (1994). Macromolecules 27, (9), 2638.Google Scholar
  6. 6.
    N. Tsutsumi, M. Morishima, and W. Sakai (1998). Macromolecules 31, 7764.Google Scholar
  7. 7.
    E. M. Breitung, C.-F. Shu, and R. J. McMahon (2000). J. Am. Chem. Soc. 122, (6), 1154.Google Scholar
  8. 8.
    P. S. Halasyamani and W. Zhang, Inorganic Materials for UV and Deep-UV Nonlinear-Optical Applications (ACS Publications, Washington, 2017).Google Scholar
  9. 9.
    B. Zhang, G. Shi, Z. Yang, F. Zhang, and S. Pan (2017). Angew. Chem. Int. Ed. 56, (14), 3916.Google Scholar
  10. 10.
    S. Yamashita (2012). J. Lightwave Technol. 30, (4), 427.Google Scholar
  11. 11.
    L. Guo, Z. Guo, and X. Li (2018). J. Mater. Sci.: Mater. Electron. 29, (3), 2577.Google Scholar
  12. 12.
    R. D. Fonseca, M. G. Vivas, D. L. Silva, G. Eucat, Y. Bretonnière, C. Andraud, L. De Boni, and C. R. Mendonça (2018). J. Phys. Chem. C 122, (3), 1770.Google Scholar
  13. 13.
    P.-H. Sung and T.-F. Hsu (1998). Polymer 39, (6–7), 1453.Google Scholar
  14. 14.
    M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, and P. Sullivan (2006). Nat. Mater. 5, (9), 703.Google Scholar
  15. 15.
    P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).Google Scholar
  16. 16.
    D. S. Chemla Nonlinear Optical Properties of Organic Molecules and Crystals (Elsevier, Amsterdam, 2012).Google Scholar
  17. 17.
    B. Nagarajan, S. Kushwaha, R. Elumalai, S. Mandal, K. Ramanujam, and D. Raghavachari (2017). J. Mater. Chem. A 5, (21), 10289.Google Scholar
  18. 18.
    X. Dai, B. Dong, M. Ren, and W. Lin (2018). J. Mater. Chem. B 6, 381.Google Scholar
  19. 19.
    P. Ferdowsi, Y. Saygili, W. Zhang, T. Edvinson, L. Kavan, J. Mokhtari, S. M. Zakeeruddin, M. Grätzel, and A. Hagfeldt (2018). ChemSusChem 11, (2), 494.Google Scholar
  20. 20.
    S. Yamada, J. Bessho, H. Nakasato, and O. Tsutsumi (2018). Dyes Pigments 150, 89.Google Scholar
  21. 21.
    V. Srinivasan, M. Panneerselvam, N. Pavithra, S. Anandan, K. Sundaravel, M. Jaccob, and A. Kathiravan (2017). J. Photochem. Photobiol., A 332, 453.Google Scholar
  22. 22.
    S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, and P. Bäuerle (2012). Adv. Funct. Mater. 22, (6), 1291.Google Scholar
  23. 23.
    M. R. S. A. Janjua, M. U. Khan, B. Bashir, M. A. Iqbal, Y. Song, S. A. R. Naqvi, and Z. A. Khan (2012). Comput. Theor. Chem. 994, 34.Google Scholar
  24. 24.
    M. R. S. A. Janjua, M. Amin, M. Ali, B. Bashir, M. U. Khan, M. A. Iqbal, W. Guan, L. Yan, and Z. M. Su (2012). Eur. J. Inorg. Chem. 2012, (4), 705.Google Scholar
  25. 25.
    M. R. S. A. Janjua, Z.-M. Su, W. Guan, C.-G. Liu, L.-K. Yan, P. Song, and G. Maheen (2010). Aust. J. Chem. 63, (5), 836.Google Scholar
  26. 26.
    M. R. S. A. Janjua, S. Jamil, A. Mahmood, A. Zafar, M. Haroon, and H. N. Bhatti (2015). Aust. J. Chem. 68, (10), 1502.Google Scholar
  27. 27.
    M. R. S. A. Janjua (2012). Inorg. Chem. 51, (21), 11306.Google Scholar
  28. 28.
    M. R. S. A. Janjua, S. Jamil, T. Ahmad, Z. Yang, A. Mahmood, and S. Pan (2014). Comput. Theor. Chem. 1033, 6.Google Scholar
  29. 29.
    M. Haroon, R. Mahmood, and M. R. S. A. Janjua (2017). J. Cluster Sci. 28, (5), 2693.Google Scholar
  30. 30.
    M. R. S. A. Janjua, Z. H. Yamani, S. Jamil, A. Mahmood, I. Ahmad, M. Haroon, M. H. Tahir, Z. Yang, and S. Pan (2016). Aust. J. Chem. 69, (4), 467.Google Scholar
  31. 31.
    R. Mahmood, M. R. S. A. Janjua, and S. Jamil (2017). J. Cluster Sci. 28, (6), 3175.Google Scholar
  32. 32.
    R. N. Almogati, S. G. Aziz, and R. Hilal (2017). J. Theor. Comput. Chem. 16, 1750018.Google Scholar
  33. 33.
    R. Hilal, S. G. Aziz, O. I. Osman, and J.-L. Bredas (2017). Mol. Simul. 43, (18), 1523.Google Scholar
  34. 34.
    M. U. Khan, M. Khalid, M. Ibrahim, A. A. C. Braga, M. Safdar, A. A. Al-Saadi, and M. R. S. A. Janjua (2018). J. Phys. Chem. C 122, (7), 4009.Google Scholar
  35. 35.
    M. U. Khan, M. Ibrahim, M. Khalid, M. S. Qureshi, T. Gulzar, K. M. Zia, A. A. Al-Saadi, and M. R. S. A. Janjua (2018). Chem. Phys. Lett. 715, 222.Google Scholar
  36. 36.
    S. Paek, H. Choi, H. Choi, C.-W. Lee, M.-S. Kang, K. Song, M. K. Nazeeruddin, and J. Ko (2010). J. Phys. Chem. C 114, (34), 14646.Google Scholar
  37. 37.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, B. E., K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. J. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, D. 0109, Revision D. 01 (Gaussian, Inc., Wallingford, CT 2009).Google Scholar
  38. 38.
    Z. Yang, C. Liu, C. Shao, X. Zeng, and D. Cao (2016). Nanotechnology 27, (26), 265701.Google Scholar
  39. 39.
    Z. Yang, C. Shao, and D. Cao (2015). RSC Adv. 5, (29), 22892.Google Scholar
  40. 40.
    J. Autschbach (2009). ChemPhysChem 10, (11), 1757.Google Scholar
  41. 41.
    A. Dreuw and M. Head-Gordon (2005). Chem. Rev. 105, (11), 4009.Google Scholar
  42. 42.
    T. Yanai, D. P. Tew, and N. C. Handy (2004). Chem. Phys. Lett. 393, (1), 51.Google Scholar
  43. 43.
    V. Barone and M. Cossi (1998). J. Phys. Chem. A 102, (11), 1995.Google Scholar
  44. 44.
    A. Karakas, A. Elmali, and H. Unver (2007). Spectrochim. Acta. A Mol. Biomol. Spectrosc. 68, (3), 567.Google Scholar
  45. 45.
    Z. Yang, C. Liu, C. Shao, C. Lin, and Y. Liu (2015). J. Phys. Chem. C 119, (38), 21852.Google Scholar
  46. 46.
    S. Gunasekaran, R. A. Balaji, S. Kumeresan, G. Anand, and S. Srinivasan (2008). Can. J. Anal. Sci. Spectrosc. 53, 149.Google Scholar
  47. 47.
    M. Adeel, A. A. Braga, M. N. Tahir, F. Haq, M. Khalid, and M. A. Halim (2017). J. Mol. Struct. 1131, 136.Google Scholar
  48. 48.
    M. N. Arshad, A.-A. M. Al-Dies, A. M. Asiri, M. Khalid, A. S. Birinji, K. A. Al-Amry, and A. A. Braga (2017). J. Mol. Struct. 1141, 142.Google Scholar
  49. 49.
    M. N. Tahir, M. Khalid, A. Islam, S. M. A. Mashhadi, and A. A. Braga (2017). J. Mol. Struct. 1127, 766.Google Scholar
  50. 50.
    S. S. Amiri, S. Makarem, H. Ahmar, and S. Ashenagar (2016). J. Mol. Struct. 1119, 18.Google Scholar
  51. 51.
    R. G. Parr, L. V. Szentpaly, and S. Liu (1999). Electrophilicity index. J. Am. Chem. Soc. 121, (9), 1922.Google Scholar
  52. 52.
    P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, (6), 2065.Google Scholar
  53. 53.
    M. Szafran, A. Komasa, and E. Bartoszak-Adamska (2007). J. Mol. Struct. 827, (1), 101.Google Scholar
  54. 54.
    C. James, A. A. Raj, R. Reghunathan, V. Jayakumar, and I. H. Joe (2006). J. Raman Spectrosc. 37, (12), 1381.Google Scholar
  55. 55.
    C. Qin and A. E. Clark (2007). Chem. Phys. Lett. 438, (1), 26.Google Scholar
  56. 56.
    B. S. Mendis and K. N. de Silva (2004). J. Mol. Struct: Theochem. 678, (1), 31.Google Scholar
  57. 57.
    D. R. Kanis, M. A. Ratner, and T. J. Marks (1994). Chem. Rev. 94, (1), 195.Google Scholar
  58. 58.
    H. S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductors, vol. 1 (Academic Press, Cambridge, 2001).Google Scholar
  59. 59.
    J.-L. Oudar and D. Chemla (1977). J. Chem. Phys. 66, (6), 2664.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Usman Khan
    • 1
  • Muhammad Ibrahim
    • 1
    Email author
  • Muhammad Khalid
    • 2
    Email author
  • Ataualpa Albert Carmo Braga
    • 3
  • Sarfraz Ahmed
    • 2
  • Ayesha Sultan
    • 4
  1. 1.Department of Applied ChemistryGovernment College UniversityFaisalabadPakistan
  2. 2.Department of ChemistryKhwaja Fareed University of Engineering and Information TechnologyRahim Yar KhanPakistan
  3. 3.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  4. 4.Department of ChemistryUniversity of Education LahoreFaisalabadPakistan

Personalised recommendations