Synthesis, Characterization and Functionalization of ZnO Nanoparticles by Glutamic Acid (Glu) and Conjugation of ZnO@Glu by Thiosemicarbazide and Its Synergistic Activity with Ciprofloxacin Against Multi-drug Resistant Staphylococcus aureus

  • Armin Nejabatdoust
  • Ali SalehzadehEmail author
  • Hojjatolah Zamani
  • Zeinab Moradi-Shoeili
Original Paper


Infections caused by multi-drug resistant Staphylococcus aureus, are considered as a universal health threat. The aim of this study was to synthesize zinc oxide (ZnO) nanoparticles (NPs), functionalization of them by glutamic acid (Glu) and conjugation with thiosemicarbazid (TSC) to enhance their antibacterial effect against ciprofloxacin resistant S. aureus. The synthesized ZnO@Glu–TSC NPs were characterized using energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The physicochemical assays confirmed the synthesis of ZnO@Glu–TSC NPs. Antibacterial potential of ZnO@Glu–TSC NPs against S. aureus was investigated using well diffusion, Minimum inhibitory concentration (MIC) determination and checkerboard titration methods. MIC values of functionalized NPs reduced by two to eightfolds against each respected strain in comparison with the ZnO nanoparticles (alone). Our results revealed the synergistic activity of ZnO@Glu–TSC NPs and ciprofloxacin (CIP) against ciprofloxacin resistant S. aureus. In this study, improved antimicrobial activity of ZnO@Glu–TSC NPs and their synergism with CIP against drug resistant S. aureus was observed. Thus, ZnO@Glu–TSC NPs could be regarded as a promising new antibacterial agent to be used for therapeutic and preventive purposes. However, further investigation needs to be performed to evaluate the safety of these NPs for medical applications.


Ciprofloxacin Nanoparticles Staphylococcus aureus Thiosemicarbazide Zinc oxide 



The authors would like to thank the university of Guilan and Islamic Azad university (Rasht branch) for providing facilities to carry out this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest exist.


  1. 1.
    P. Patra, S. Mitra, N. Debnath, P. Pramanik, and A. Goswami (2014). Bull. Mater. Sci. 37, 199.CrossRefGoogle Scholar
  2. 2.
    M. R. Hesari, A. Salehzadeh, and R. Darsanaki (2017). Acta Microbiol. Immunol. Hung. 1, 14.Google Scholar
  3. 3.
    S. H. Zhang, R. X. Zhao, G. Li, H. Y. Zhang, C. L. Zhang, and G. Muller (2014). RSC Adv. 4, 54837.CrossRefGoogle Scholar
  4. 4.
    V. Srivastava, D. Gusain, and Y. C. Sharma (2013). Ceram. Int. 39, 9803.CrossRefGoogle Scholar
  5. 5.
    T. Szabo, J. Nemeth, and I. Dekany (2003). Coll. Surf. A. 230, 23.CrossRefGoogle Scholar
  6. 6.
    L. S. Reddy, M. M. Nisha, M. Joice, and P. N. Shilpa (2014). Pharm. Biol. 52, 1388.CrossRefGoogle Scholar
  7. 7.
    S. Mitra, S. Chandra, D. Laha, P. Patra, N. Debnath, A. Pramanik, P. Pramanik, and A. Goswami (2012). Mater. Res. Bull. 47, 586.CrossRefGoogle Scholar
  8. 8.
    E. Taylor and T. J. Webster (2011). Int. J. Nanomed. 6, 1463.CrossRefGoogle Scholar
  9. 9.
    J. S. Casas, M. S. Garcıa-Tasende, and J. Sordo (2000). Coordin. Chem. Rev. 209, 197.CrossRefGoogle Scholar
  10. 10.
    Q. X. Li, H. A. Tang, Y. Z. Li, M. Wang, L. F. Wang, and C. G. Xia (2000). J. Inorg. Biochem. 78, 167.CrossRefGoogle Scholar
  11. 11.
    H. Barrak, T. Saied, P. Chevallier, G. Laroche, A. M. Nif, and A. H. Hamzaoui (2016). Arab. J. Chem. 1, 1. Scholar
  12. 12.
    S. A. S. Shandiz, A. Montazeri, M. Abdolhosseini, S. H. Shahrestani, M. Hedayati, Z. Moradi-Shoeili, and A. Salehzadeh (2018). J. Clust. Sci. 29, 1107.CrossRefGoogle Scholar
  13. 13.
    The Clinical & Laboratory Standards Institute [CLSI] (2015), 76.Google Scholar
  14. 14.
    L. He, Y. Liu, A. Mustapha, and M. Lin (2011). Microbiol. Res. 166, 207.CrossRefGoogle Scholar
  15. 15.
    S. Chaudhary, Y. Kaur, A. Umar, and G. R. Chaudhary (2016). J. Mol. Liq. 220, 1013.CrossRefGoogle Scholar
  16. 16.
    G. Xiong, U. Pal, J. G. Serrano, K. B. Ucer, and R. T. Williams (2006). Phys. Status Solidi 3, 3577.CrossRefGoogle Scholar
  17. 17.
    D. M. Wiles and T. Suprunchuk (1969). Can. J. Chem. 47, 1087.CrossRefGoogle Scholar
  18. 18.
    L. Jin and Y. Wang (2017). Phys. Chem. Chem. Phys. 19, 12992.CrossRefGoogle Scholar
  19. 19.
    J. L. Navarrete, V. Hernandez, and F. J. Ramirez (1995). J. Mol. Struct. 348, 249.CrossRefGoogle Scholar
  20. 20.
    K. C. Barick, A. Sharma, N. G. Shetake, R. S. Ningthoujam, R. K. Vatsa, P. D. Babu, B. N. Pandey, and P. A. Hassan (2015). Dalton Trans. 44, 14686.CrossRefGoogle Scholar
  21. 21.
    S. K. Sinha, S. Ram, and O. P. Lamba (1988). Spectrochim. Acta A Mol. Spectrosc. 44, 713.CrossRefGoogle Scholar
  22. 22.
    K. R. Raghupathi, R. T. Koodali, and A. C. Manna (2011). Langmuir. 27, 4020.CrossRefGoogle Scholar
  23. 23.
    Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi (2011). Appl. Environ. Microbiol. 77, 2325.CrossRefGoogle Scholar
  24. 24.
    N. C. Kasuga, K. Sekino, M. Ishikawa, A. Honda, M. Yokoyama, S. Nakano, N. Shimada, C. Koumo, and K. Nomiya (2003). J. Inorg. Biochem. 96, 298.CrossRefGoogle Scholar
  25. 25.
    J. A. Rufian-Henares and S. P. de la Cueva (2009). J. Agric. Food Chem. 57, 432.CrossRefGoogle Scholar
  26. 26.
    Q. X. Li, H. A. Tang, Y. Z. Li, M. Wang, L. F. Wang, and C. G. Xia (2000). J. Inorg. Biochem. 78, 174.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Armin Nejabatdoust
    • 1
  • Ali Salehzadeh
    • 1
    Email author
  • Hojjatolah Zamani
    • 2
  • Zeinab Moradi-Shoeili
    • 3
  1. 1.Department of Biology, Rasht BranchIslamic Azad UniversityRashtIran
  2. 2.Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
  3. 3.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran

Personalised recommendations