Advertisement

Journal of Clinical Immunology

, Volume 39, Issue 8, pp 762–775 | Cite as

Clinical and Molecular Features of Chronic Granulomatous Disease in Mainland China and a XL-CGD Female Infant Patient After Prenatal Diagnosis

  • Shiyu Wang
  • Tao Wang
  • Qingqing Xiang
  • Min Xiao
  • Yao Cao
  • Huan Xu
  • Shujuan Li
  • Wen Tian
  • Xiaodong Zhao
  • Xuemei Tang
  • Liping JiangEmail author
Original Article

Abstract

Purpose

Chronic granulomatous disease (CGD) is the most common phagocyte defect disease. Here, we describe 114 CGD patients in our center and report a rare female infant with XL-CGD to provide a better understanding of diagnosis, treatment, and prenatal diagnosis of CGD.

Method

Patients were diagnosed by DHR-1,2,3 flow cytometry assays and gene analysis. X chromosome inactivation analysis and gp91phox protein test were used for a female infant with XL-CGD.

Results

XL-CGD accounts for the majority of cases in China and results in higher susceptibility to some infections than AR-CGD. The DHR assay can help diagnose CGD quickly, and atypical results should be combined with clinical manifestations, genetic analysis, and regular follow-up. For prenatal diagnosis, both gDNA and cDNA genotypes of amniotic fluid cells should be identified, and cord blood DHR assays should be performed to identify female XL-CGD patients.

Keywords

Chronic granulomatous disease dihydrorhodamine-1,2,3 assay gene analysis prenatal diagnosis X inactivation 

Notes

Acknowledgments

We thank the patients and their families for their trust and cooperation.

Funding Source

The study was financially supported by the Development and Application of Rapid Diagnostic Technology for Primary Immunodeficiency Disease Caused by Abnormal Response to BCG Vaccination, Science and Technology Innovation Project of Social Undertaking and People’s Livelihood Guarantee of Chongqing Science and Technology Commission (cstc 2015 shmszx0131).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Beghin A, Comini M, Soresina A, Imberti L, Zucchi M, Plebani A, et al. Chronic granulomatous disease in children: a single center experience. Clin Immunol. 2018;188:12–9.PubMedGoogle Scholar
  2. 2.
    Roos D. Chronic granulomatous disease. Br Med Bull. 2016;118:50–63.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005;338:677–86.PubMedGoogle Scholar
  4. 4.
    Wolach B, Gavrieli R, de Boer M, van Leeuwen K, Berger-Achituv S, Stauber T, et al. Chronic granulomatous disease: clinical, functional, molecular, and genetic studies. The Israeli experience with 84 patients. Am J Hematol. 2017;92:28–36.PubMedGoogle Scholar
  5. 5.
    van de Geer A, Nieto-Patlan A, Kuhns DB, Tool AT, Arias AA, Bouaziz M, et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest. 2018;128:3957–75.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Arnadottir GA, Norddahl GL, Gudmundsdottir S, Agustsdottir AB, Sigurdsson S, Jensson BO, et al. A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun. 9(2018):4447.Google Scholar
  7. 7.
    Rawat A, Bhattad S, Singh S. Chronic granulomatous disease. Indian J Pediatr. 2016;83:345–53.PubMedGoogle Scholar
  8. 8.
    Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 79(2000):155–69.PubMedGoogle Scholar
  9. 9.
    van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4:e5234.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ochs HD, Igo RP. The NBT slide test: a simple screening method for detecting chronic granulomatous disease and female carriers. J Pediatr. 1973;83:77–82.PubMedGoogle Scholar
  11. 11.
    Abraham RS, Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol. 2016;23:254–71.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods. 1995;178:89–97.PubMedGoogle Scholar
  13. 13.
    Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992;51:1229–39.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lewis EM, Singla M, Sergeant S, Koty PP, McPhail LC. X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation. Clin Immunol. 2008;129:372–80.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu H, Tian W, Li SJ, Zhang LY, Liu W, Zhao Y, et al. Clinical and molecular features of 38 children with chronic granulomatous disease in Mainland China. J Clin Immunol. 2014;34:633–41.PubMedGoogle Scholar
  16. 16.
    Zhong XH, Ding J, Zhou JH, Yu ZH, Sun SZ, Bao Y, et al. A multicenter study of reference intervals for 15 laboratory parameters in Chinese children. Zhonghua Er Ke Za Zhi. 2018;56:835–45.PubMedGoogle Scholar
  17. 17.
    Ding Y, Zhou L, Xia Y, Wang W, Wang Y, Li L, et al. Reference values for peripheral blood lymphocyte subsets of healthy children in China. J Allergy Clin Immunol. 2018;142:970–973.e8.PubMedGoogle Scholar
  18. 18.
    Roos D, Kuhns DB, Maddalena A, Roesler J, Lopez JA, Ariga T, et al. Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cell Mol Dis. 2010;45:246–65.Google Scholar
  19. 19.
    Zhou Q, Hui X, Ying W, Hou J, Wang W, Liu D, et al. A cohort of 169 chronic granulomatous disease patients exposed to BCG vaccination: a retrospective study from a single center in Shanghai, China (2004-2017). J Clin Immunol. 2018;38:260–72.PubMedGoogle Scholar
  20. 20.
    Wu J, Wang WF, Zhang YD, Chen TX. Clinical features and genetic analysis of 48 patients with chronic granulomatous disease in a single center study from Shanghai, China (2005-2015): new studies and a literature review. J Immunol Res. 2017;2017:8745254.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Roos D, Kuhns DB, Maddalena A, Bustamante J, Kannengiesser C, de Boer M, et al. Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells Mol Dis. 2010;44:291–9.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, et al. Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol. 2008;126:155–64.PubMedGoogle Scholar
  23. 23.
    de Oliveira-Junior EB, Zurro NB, Prando C, Cabral-Marques O, Pereira PV, Schimke LF, et al. Clinical and genotypic spectrum of chronic granulomatous disease in 71 Latin American patients: first report from the LASID Registry. Pediatr Blood Cancer. 2015;62:2101–7.PubMedGoogle Scholar
  24. 24.
    Koker MY, Camcioglu Y, van Leeuwen K, Kilic SS, Barlan I, Yilmaz M, et al. Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients. J Allergy Clin Immunol. 2013;132:1156–1163.e5.PubMedGoogle Scholar
  25. 25.
    Henrickson SE, Jongco AM, Thomsen KF, Garabedian EK, Thomsen IP. Noninfectious manifestations and complications of chronic granulomatous disease. J Pediatric Infect Dis Soc. 2018;7:S18–24.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Huang C, De Ravin SS, Paul AR, Heller T, Ho N, Datta LW, et al. Genetic risk for inflammatory bowel disease is a determinant of Crohn’s disease development in chronic granulomatous disease. Inflamm Bowel Dis. 2016;22:2794–801.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Marciano BE, Rosenzweig SD, Kleiner DE, Anderson VL, Darnell DN, Anaya-O’Brien S, et al. Gastrointestinal involvement in chronic granulomatous disease. Pediatrics. 2004;114:462–8.PubMedGoogle Scholar
  28. 28.
    Norouzi S, Aghamohammadi A, Mamishi S, Rosenzweig SD, Rezaei N. Bacillus Calmette-Guerin (BCG) complications associated with primary immunodeficiency diseases. J Inf Secur. 2012;64:543–54.Google Scholar
  29. 29.
    Mohsenzadegan M, Fattahi F, Fattahi F, Mirshafiey A, Fazlollahi MR, Naderi Beni F, et al. Altered pattern of naive and memory B cells and B1 cells in patients with chronic granulomatous disease. Iran J Allergy Asthma Immunol. 2014;13:157–65.PubMedGoogle Scholar
  30. 30.
    Carnide EG, Jacob CA, Castro AM, Pastorino AC. Clinical and laboratory aspects of chronic granulomatous disease in description of eighteen patients. Pediatr Allergy Immunol. 2005;16:5–9.PubMedGoogle Scholar
  31. 31.
    Moir S, De Ravin SS, Santich BH, Kim JY, Posada JG, Ho J, et al. Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells. Blood. 2012;120:4850–8.PubMedPubMedCentralGoogle Scholar
  32. 32.
    El Hawary R, Meshaal S, Nagy D, Fikry I, Alkady R, Abd Elaziz D, et al. Study of naive and memory cells in a cohort of Egyptian chronic granulomatous disease patients. J Recept Signal Transduct Res. 2015;35:423–8.PubMedGoogle Scholar
  33. 33.
    Horvath R, Rozkova D, Lastovicka J, Polouckova A, Sedlacek P, Sediva A, et al. Expansion of T helper type 17 lymphocytes in patients with chronic granulomatous disease. Clin Exp Immunol. 2011;166:26–33.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Donaldson M, Antignani A, Milner J, Zhu N, Wood A, Cardwell-Miller L, et al. p47phox-deficient immune microenvironment signals dysregulate naive T-cell apoptosis. Cell Death Differ. 2009;16:125–38.PubMedGoogle Scholar
  35. 35.
    El Hawary R, Meshaal S, Deswarte C, Galal N, Abdelkawy M, Alkady R, et al. Role of flow cytometry in the diagnosis of chronic granulomatous disease: the Egyptian experience. J Clin Immunol. 2016;36:610–8.PubMedGoogle Scholar
  36. 36.
    Ang EY, Soh JY, Liew WK, Chan KW, Thoon KC, Chong CY, et al. Reliability of acute illness dihydrorhodamine-123 testing for chronic granulomatous disease. Clin Lab. 2013;59:203–6.PubMedGoogle Scholar
  37. 37.
    Mauch L, Lun A, O’Gorman MR, Harris JS, Schulze I, Zychlinsky A, et al. Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin Chem. 2007;53:890–6.PubMedGoogle Scholar
  38. 38.
    Rosen-Wolff A, Soldan W, Heyne K, Bickhardt J, Gahr M, Roesler J. Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann Hematol. 2001;80:113–5.PubMedGoogle Scholar
  39. 39.
    Anderson-Cohen M, Holland SM, Kuhns DB, Fleisher TA, Ding L, Brenner S, et al. Severe phenotype of chronic granulomatous disease presenting in a female with a de novo mutation in gp91-phox and a non familial, extremely skewed X chromosome inactivation. Clin Immunol. 2003;109:308–17.PubMedGoogle Scholar
  40. 40.
    Francke U. Random X inactivation resulting in mosaic nullisomy of region Xp21.1----p21.3 associated with heterozygosity for ornithine transcarbamylase deficiency and for chronic granulomatous disease. Cytogenet Cell Genet. 1984;38:298–307.PubMedGoogle Scholar
  41. 41.
    Koker MY, Sanal O, de Boer M, Tezcan I, Metin A, Tan C, et al. Skewing of X-chromosome inactivation in three generations of carriers with X-linked chronic granulomatous disease within one family. Eur J Clin Investig. 2006;36:257–64.Google Scholar
  42. 42.
    Wolach B, Scharf Y, Gavrieli R, de Boer M, Roos D. Unusual late presentation of X-linked chronic granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB. Blood. 2005;105:61–6.PubMedGoogle Scholar
  43. 43.
    Gono T, Yazaki M, Agematsu K, Matsuda M, Yasui K, Yamaura M, et al. Adult onset X-linked chronic granulomatous disease in a woman patient caused by a de novo mutation in paternal-origin CYBB gene and skewed inactivation of normal maternal X chromosome. Intern Med. 2008;47:1053–6.PubMedGoogle Scholar
  44. 44.
    Mouy R, Seger R, Bourquin JP, Veber F, Blanche S, Griscelli C, et al. Interferon gamma for chronic granulomatous disease. N Engl J Med. 1991;325:1516–7.PubMedGoogle Scholar
  45. 45.
    The International Chronic Granulomatous Disease Cooperative Study Group. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med. 1991;324:509–16.Google Scholar
  46. 46.
    Seger RA. Modern management of chronic granulomatous disease. Br J Haematol. 2008;140:255–66.PubMedGoogle Scholar
  47. 47.
    Seger RA. Chronic granulomatous disease: recent advances in pathophysiology and treatment. Neth J Med. 2010;68:334–40.PubMedGoogle Scholar
  48. 48.
    Margolis DM, Melnick DA, Alling DW, Gallin JI. Trimethoprim-sulfamethoxazole prophylaxis in the management of chronic granulomatous disease. J Infect Dis. 1990;162:723–6.PubMedGoogle Scholar
  49. 49.
    Mouy R, Veber F, Blanche S, Donadieu J, Brauner R, Levron JC, et al. Long-term itraconazole prophylaxis against Aspergillus infections in thirty-two patients with chronic granulomatous disease. J Pediatr. 1994;125:998–1003.PubMedGoogle Scholar
  50. 50.
    Gallin JI, Alling DW, Malech HL, Wesley R, Koziol D, Marciano B, et al. Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med. 2003;348:2416–22.PubMedGoogle Scholar
  51. 51.
    Kang EM, Marciano BE, DeRavin S, Zarember KA, Holland SM, Malech HL. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2011;127:1319–26 quiz 1327-8.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Connelly JA, Marsh R, Parikh S, Talano JA. Allogeneic hematopoietic cell transplantation for chronic granulomatous disease: controversies and state of the art. J Pediatric Infect Dis Soc. 2018;7:S31–9.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Morillo-Gutierrez B, Beier R, Rao K, Burroughs L, Schulz A, Ewins AM, et al. Treosulfan-based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience. Blood. 2016;128:440–8.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Khandelwal P, Bleesing JJ, Davies SM, Marsh RA. A single-center experience comparing alemtuzumab, fludarabine, and melphalan reduced-intensity conditioning with myeloablative busulfan, cyclophosphamide, and antithymocyte globulin for chronic granulomatous disease. Biol Blood Marrow Transplant. 2016;22:2011–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Clinical Immunology Laboratory, Pediatric Research Institute, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child development and Critical DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Laboratory Biosafety-2, Pediatric Research Institute, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingChina
  3. 3.Department of Immunology, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical DisordersChildren’s Hospital of Chongqing Medical UniversityChongqingChina

Personalised recommendations