Advertisement

Journal of Clinical Immunology

, Volume 38, Issue 7, pp 748–752 | Cite as

Chronic Aichi Virus Infection in a Patient with X-Linked Agammaglobulinemia

  • Giorgia Bucciol
  • Leen Moens
  • Kathryn Payne
  • Elke Wollants
  • Djalila Mekahli
  • Elena Levtchenko
  • François Vermeulen
  • Thomas Tousseyn
  • Paul Gray
  • Cindy S. Ma
  • Stuart G. Tangye
  • Marc Van Ranst
  • Julianne R. Brown
  • Judy Breuer
  • Isabelle Meyts
Letter to Editor
  • 37 Downloads

To the Editor,

X-linked agammaglobulinemia (XLA) is caused by mutations in BTK, the gene encoding Bruton’s tyrosine kinase. BTK is critical for human B cell development and maturation, and hemizygous loss-of-function (LOF) mutations result in peripheral B cell lymphopenia, rudimentary tonsils and lymph nodes, and severely reduced to absent levels of serum immunoglobulins (Ig). Affected boys present in infancy with recurrent and often life-threatening respiratory tract and skin infections with encapsulated bacteria. Gastrointestinal infections with pathogens such as Giardia lamblia are also common, and they can manifest autoimmunity and autoinflammation [1, 2]. XLA patients also have extreme susceptibility to viral infections, especially with Enteroviruses, which can cause severe central nervous system (CNS) disease [3]. The risk of Enteroviral infection is particularly high in patients who experience a diagnostic delay. Chronic Norovirus infection of the gut is another problematic...

Keywords

X-linked agammaglobulinemia XLA Bruton Aichi virus AiV1 

Notes

Funding

GB is supported by the Research Foundation—Flanders (project G0C8517N). LM is supported by the CSL Behring Chair in Primary Immunodeficiencies, by the KID-FONDS charity of KU Leuven and by the Jeffrey Modell Foundation. EL is supported by the Research Foundation—Flanders (Clinical Investigator grant 1801110N). JRB is supported by a pediatric research grant from the Great Ormond Street Hospital Children’s Charity (Diagnosis of encephalitis by deep sequencing, V4317). All research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. IM is supported by the Jeffrey Modell Foundation and by the Research Foundation—Flanders (project G0C8517N).

Compliance with Ethical Standards

Author IM has received a CSL Behring grant paid to Institution. The authors have no further conflicts of interest to disclose. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Supplementary material

10875_2018_558_MOESM1_ESM.docx (9 mb)
ESM 1 (DOCX 9265 kb)

References

  1. 1.
    Conley ME, Rohrer J, Minegishi Y. X-linked agammaglobulinemia. Clin Rev Allergy Immunol. 2000 Oct 1;19(2):183–204.CrossRefGoogle Scholar
  2. 2.
    Hernandez-Trujillo VP, Scalchunes C, Cunningham-Rundles C, Ochs HD, Bonilla FA, Paris K, et al. Autoimmunity and inflammation in X-linked agammaglobulinemia. J Clin Immunol. 2014 Aug 1;34(6):627–32.CrossRefGoogle Scholar
  3. 3.
    Bearden D, Collett M, Quan PL, Costa-Carvalho BT, Sullivan KE. Enteroviruses in X-linked agammaglobulinemia: update on epidemiology and therapy. J Allergy Clin Immunol Pract. 2016 Dec;4(6):1059–65.CrossRefGoogle Scholar
  4. 4.
    Frange P, Touzot F, Debré M, Héritier S, Leruez-Ville M, Cros G, et al. Prevalence and clinical impact of norovirus fecal shedding in children with inherited immune deficiencies. J Infect Dis. 2012 Oct 15;206(8):1269–74.CrossRefGoogle Scholar
  5. 5.
    Kempf B, Edgar JD, Mc Caughey C, Devlin LA. Nitazoxanide is an ineffective treatment of chronic norovirus in patients with X-linked agammaglobulinemia and may yield false-negative polymerase chain reaction findings in stool specimens. J Infect Dis. 2017 Feb 1;215(3):486–7.CrossRefGoogle Scholar
  6. 6.
    Brown L-AK, Clark I, Brown JR, Breuer J, Lowe DM. Norovirus infection in primary immune deficiency. Rev Med Virol. 2017 Mar 8;27(3):e1926.CrossRefGoogle Scholar
  7. 7.
    Frémond M-L, Pérot P, Muth E, Cros G, Dumarest M, Mahlaoui N, et al. Next-generation sequencing for diagnosis and tailored therapy: a case report of astrovirus-associated progressive encephalitis. J Pediatr Infect Dis Soc. 2015 Sep 1;4(3):e53–7.CrossRefGoogle Scholar
  8. 8.
    Wilson MR, Suan D, Duggins A, Schubert RD, Khan LM, Sample HA, et al. A novel cause of chronic viral meningoencephalitis: cache Valley virus. Ann Neurol. 2017 Jun 19;82(1):105–14.CrossRefGoogle Scholar
  9. 9.
    Martini H, Enright V, Perro M, Workman S, Birmelin J, Giorda E, et al. Importance of B cell co-stimulation in CD4+ T cell differentiation: X-linked agammaglobulinaemia, a human model. Clin Exp Immunol. 2011 Apr 13;164(3):381–7.CrossRefGoogle Scholar
  10. 10.
    Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015 Oct 1;136(4):993–1006.e1.CrossRefGoogle Scholar
  11. 11.
    Kawada J, Okuno Y, Torii Y, Okada R, Hayano S, Ando S, et al. Identification of viruses in cases of pediatric acute encephalitis and encephalopathy using next-generation sequencing. Sci Rep. 2016 Sep 14;6:33452.CrossRefGoogle Scholar
  12. 12.
    Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu G, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014 Jun 19;370(25):2408–17.CrossRefGoogle Scholar
  13. 13.
    Yamashita T, Sakae K, Tsuzuki H, Suzuki Y, Ishikawa N, Takeda N, et al. Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J Virol. 1998 Oct 1;72(10):8408–12.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kitajima M, Gerba CP. Aichi virus 1: environmental occurrence and behavior. Pathogens. 2015 May 19;4(2):256–68.CrossRefGoogle Scholar
  15. 15.
    Yamashita T, Sakae K, Ishihara Y, Isomura S, Utagawa E. Prevalence of newly isolated, cytopathic small round virus (Aichi strain) in Japan. J Clin Microbiol. 1993 Nov 1;31(11):2938–43.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Goyer M, Aho L-S, Bour J-B, Ambert-Balay K, Pothier P. Seroprevalence distribution of Aichi virus among a French population in 2006–2007. Arch Virol. 2008 Jun 1;153(6):1171–4.CrossRefGoogle Scholar
  17. 17.
    Ribes JM, Montava R, Téllez-Castillo CJ, Fernández-Jiménez M, Buesa J. Seroprevalence of Aichi virus in a Spanish population from 2007 to 2008. Clin Vaccine Immunol. 2010 Apr 1;17(4):545–9.CrossRefGoogle Scholar
  18. 18.
    Sdiri-Loulizi K, Hassine M, Bour J-B, Ambert-Balay K, Mastouri M, Aho L-S, et al. Aichi virus IgG seroprevalence in Tunisia parallels genomic detection and clinical presentation in children with gastroenteritis. Clin Vaccine Immunol. 2010 Jul 1;17(7):1111–6.CrossRefGoogle Scholar
  19. 19.
    Oh D-Y, Silva PA, Hauroeder B, Diedrich S, Cardoso DDP, Schreier E. Molecular characterization of the first Aichi viruses isolated in Europe and in South America. Arch Virol. 2006 Jun 1;151(6):1199–206.CrossRefGoogle Scholar
  20. 20.
    Portes SAR, de Mello Volotao E, Rose TL, Rocha MS. Trindade Pinheiro Xavier M da P, de Assis RM, et al. Aichi virus positivity in HIV-1 seropositive children hospitalized with diarrheal disease. Curr HIV Res. 2015;13(4):325–31.CrossRefGoogle Scholar
  21. 21.
    Oude Munnink BB, Canuti M, Deijs M, de Vries M, Jebbink MF, Rebers S, et al. Unexplained diarrhoea in HIV-1 infected individuals. BMC Infect Dis. 2014 Jan 13;14:22.CrossRefGoogle Scholar
  22. 22.
    Jongco AM, Gough JD, Sarnataro K, Rosenthal DW, Moreau J, Ponda P, et al. X-linked agammaglobulinemia presenting as polymicrobial pneumonia, including Pneumocystis jirovecii. Ann Allergy Asthma Immunol. 2014 Jan 1;112(1):74–75.e2.CrossRefGoogle Scholar
  23. 23.
    Gofshteyn J, Cárdenas AM, Bearden D. Treatment of chronic enterovirus encephalitis with fluoxetine in a patient with X-linked agammaglobulinemia. Pediatr Neurol. 2016 Nov 1;64:94–8.CrossRefGoogle Scholar
  24. 24.
    Engelen MA, Gunia S, Stypmann J. Elimination of norovirus in a chronic carrier under immunosuppression after heart transplantation – effect of everolimus. Transpl Int. 2011;24(11):e102–3.CrossRefGoogle Scholar
  25. 25.
    Andrassy J, Hoffmann VS, Rentsch M, Stangl M, Habicht A, Meiser B, et al. Is cytomegalovirus prophylaxis dispensable in patients receiving an mTOR inhibitor–based immunosuppression? A systematic review and meta-analysis. Transplantation. 2012 Dec 27;94(12):1208.CrossRefGoogle Scholar
  26. 26.
    Blanco NB, Kuonen R, Bellini C, Manuel O, Estrade C, Mazza-Stalder J, et al. Chronic norovirus gastroenteritis in a double hematopoietic stem cell and lung transplant recipient. Transpl Infect Dis. 2011;13(2):213–5.CrossRefGoogle Scholar
  27. 27.
    Xu F, Zhao X, Hu S, Li J, Yin L, Mei S, et al. Amphotericin B inhibits enterovirus 71 replication by impeding viral entry. Sci Rep. 2016 Sep 9;6:33150.CrossRefGoogle Scholar
  28. 28.
    Edwards ESJ, Bier J, Cole TS, Wong M, Hsu P, Berglund LJ, et al. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation, function and EBV immunity. J Allergy Clin Immunol [Internet]. 2018 May 22 [cited 2018 Jun 15]; Available from: http://www.sciencedirect.com/science/article/pii/S0091674918307024
  29. 29.
    Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015 Aug;15(8):486–99.CrossRefGoogle Scholar
  30. 30.
    Yamamoto T, Price DA, Casazza JP, Ferrari G, Nason M, Chattopadhyay PK, et al. Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection. Blood. 2011 May 5;117(18):4805–15.CrossRefGoogle Scholar
  31. 31.
    Randall KL, Chan SS-Y, Ma CS, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011 Oct 24;208(11):2305–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giorgia Bucciol
    • 1
    • 2
  • Leen Moens
    • 1
  • Kathryn Payne
    • 3
  • Elke Wollants
    • 4
  • Djalila Mekahli
    • 2
    • 5
  • Elena Levtchenko
    • 2
    • 5
  • François Vermeulen
    • 2
  • Thomas Tousseyn
    • 6
  • Paul Gray
    • 7
    • 8
  • Cindy S. Ma
    • 3
    • 9
    • 10
  • Stuart G. Tangye
    • 3
    • 11
    • 10
  • Marc Van Ranst
    • 4
    • 12
  • Julianne R. Brown
    • 9
  • Judy Breuer
    • 9
    • 13
  • Isabelle Meyts
    • 1
    • 2
  1. 1.Department of Immunology and Microbiology, Laboratory of inborn errors of immunityKU LeuvenLeuvenBelgium
  2. 2.Department of PediatricsUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Immunology DivisionGarvan Institute of Medical ResearchDarlinghurstAustralia
  4. 4.Laboratory of Clinical and Epidemiological Virology (Rega Institute)KU LeuvenLeuvenBelgium
  5. 5.Department of Development and RegenerationKU LeuvenLeuvenBelgium
  6. 6.Department of Imaging & PathologyKU Leuven and University Hospitals LeuvenLeuvenBelgium
  7. 7.School of Women’s and Children’s Health, Faculty of MedicineUniversity of New South WalesSydneyAustralia
  8. 8.Department of Immunology and Infectious DiseaseSydney Children’s HospitalSydneyAustralia
  9. 9.Department of Microbiology, Virology and Infection Prevention and ControlGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
  10. 10.CIRCA (Clinical Immunogenomics Research Consortia Australia)SydneyAustralia
  11. 11.St Vincent’s Clinical SchoolUNSW Sydney Faculty of MedicineSydneyAustralia
  12. 12.Department of Microbiology and ImmunologyKU LeuvenLeuvenBelgium
  13. 13.Division of Infection and ImmunityUniversity College LondonLondonUK

Personalised recommendations