Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temporal and source assessments of organic and elemental carbon at sites in the northern South African interior

  • 10 Accesses

Abstract

Particulate matter (PM) can affect climate, air quality, human health, acid deposition and visibility, and contain a significant fraction of organic (OC) and elemental carbon (EC). Southern Africa is an important source region for OC and EC, however, little OC and EC data have been published for this region. This paper presents a multi-year, multi-site (an urban-industrial site in the Vaal Triangle, UI-VT; an industrially influenced site at Amerfoort, iI-AF; and two regional background sites at Skukuza and Louis Trichardt, RR-SK and RR-LT) PM with an aerodynamic diameter ≤ 2.5 μm (PM2.5) OC and EC dataset for South Africa. The median OC (9.3) and EC (3.2 μg.m−3) concentrations at UI-VT were 1.3 to 2.5 and 2.7 to 4.4 times higher, if compared to the other sites. OC/EC ratios indicated that sources in close proximity to UI-VT were likely the main contributors, while sources that are more distant contributed fractionally more at the other sites. Household combustion for space heating and regional open biomass burning contributed to elevated levels during the cold and dry months at UI-VT. Regional open biomass burning also lead to higher OC and EC concentrations during the dry season at the industrially influenced site (iI-AF) and one of the regional background sites (RR-SK). From the seasonal concentration patterns, it seemed as if household combustion for space heating also contributed at these two sites during the cold months, but this could not be proven, even if only samples with limited influence of open biomass burning were considered. Such biomass burning influences were semi-quantified by considering MODIS fire pixels occurring within the air mass fetch region for each sample. For the remaining regional background site (RR-LT) the results suggesed that only regional open biomass burning contributed to elevated levels of OC and EC in the dry season and that household combustion for space heating did not contribute significantly.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. AERIS: INDAAF. https://en.aeris-data.fr/project/8530a6c7-ce50-3a69-b186-a1a63f03d789/ (2019). Accessed 5 August 2014

  2. Annegarn, H.J., Leslie, A.C.D., Winchester, J.W., Sellschop, J.P.F.: Particle Size and temporal characteristics of aerosol composition near coal-fired electric power plants of the Eastern Transvaal. Aerosol Sci. Tech. 2, 489-498, https://doi.org/10.1080/02786828308958652

  3. Archibald, S., Roy, D.P., Van Wilgen, B.W., Scholes, R.J.: What limits rire? An examination of driver's of burnt area in southern Africa. Glob. Chang. Biol. (2009). https://doi.org/10.1111/j.1365-2486.2008.01754.x

  4. ARL: Air Resources Laboratory: Gridded Meteorological Data Archives. http://www.ready.noaa.gov/archives.php (2014). Accessed 24 February 2014

  5. Aurela, M., Saarikoski, S., Timonen, H., Aalto, P., Keronen, P., Saarnio, K., Teinilä, K., Kulmala, M., Hillamo, R.: Carbonaceous aerosol at a forested and an urban background sites in southern Finland. Atmos. Environ. 45, 1394–1401 (2011). https://doi.org/10.1016/j.atmosenv.2010.12.039

  6. Aurela, M., Beukes, J.P., Van Zyl, P., Vakkari, V., Teinilä, K., Saarikoski, S., Laakso, L.: The composition of ambient and fresh biomass burning aerosols at a savannah site, South Africa. S. Afr. J. Sci. 112(5–6), 1–8 (2016). https://doi.org/10.17159/sajs.2016/20150223

  7. Baldauf, R.W., Lane, D.D., Marotz, G.A., Wiener, R.W.: Performance evaluation of the portable MiniVOL particulate matter sampler. Atmos. Environ. 35(35), 6087–6091 (2001). https://doi.org/10.1016/S1352-2310(01)00403-4

  8. Basson, J., Daavittila, J.: High carbon ferrochrome technology. In: Gasik, M. (ed.) Handbook of Ferroalloys: Theory and Technology, pp. 317–363. Elsevier Science, Amsterdam (2013)

  9. Birch, M., Cary, R.: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25(3), 221–241 (1996). https://doi.org/10.1080/02786829608965393

  10. Booyens, W., Van Zyl, P.G., Beukes, J.P., Ruiz-Jimenez, J., Kopperi, M., Riekkola, M.-L., Josipovic, M., Venter, A.D., Jaars, K., Laakso, L., Vakkari, V., Kulmala, M., Pienaar, J.J.: Size-resolved characterisation of organic compounds in atmospheric aerosols collected at Welgegund. South Africa. J. Atmos. Chem. 72(1), 43–64 (2015). https://doi.org/10.1007/s10874-015-9304-6

  11. Booyens, W., Beukes, J.P., Van Zyl, P.G., Ruiz-Jimenez, J., Kopperi, M., Riekkola, M.-L., Josipovic, M., Vakkari, V., Laakso, L.: Assessment of polar organic aerosols at a regional background site in southern Africa. J. Atmos. Chem. 76(2), 89–113 (2019a). https://doi.org/10.1007/s10874-019-09389-y

  12. Booyens, W., Van Zyl, P.G., Beukes, J.P., Ruiz-Jimenez, J., Kopperi, M., Riekkola, M.-L., Vakkari, V., Josipovic, M., Kulmala, M., Laakso, L.: Characterising particulate organic nitrogen at a savannah-grassland region in South Africa. Atmosphere. 10, 492 (2019b). https://doi.org/10.3390/atmos10090492

  13. Boschetti, L., Roy, D., Hoffmann, A.A.: MODIS Collection 5 Burned Area Product - MCD45. User’s Guide Version 2.0 (2009)

  14. Boschetti, L., Roy, D., Hoffmann, A.A., Humber, M.: MODIS Collection 5.1 Burned Area Product - MCD45. User’s Guide Version 3.0.1 (2013)

  15. Butt, E.W., Rap, A., Schmidt, A., Scott, C.E., Pringle, K.J., Reddington, C.L., Richards, N.A.D., Woodhouse, M.T., Ramirez-Villegas, J., Yang, H., Vakkari, V., Stone, E.A., Rupakheti, M., Praveen, P.S., van Zyl, P.G., Beukes, J.P., Josipovic, M., Mitchell, E.J.S., Sallu, S.M., Forster, P.M., Spracklen, D.V.: The impact of residential combustion emissions on atmospheric aerosol, human health and climate. Atmos. Chem. Phys. Discuss. 16, 873–905 (2016). 10.5194/acp-16-873-2016

  16. Census 2011: http://www.statssa.gov.za/census/census_2011/census_products/Census_2011_Census_in_brief.pdf (2011a). Accessed 18 November 2019

  17. Census 2011: http://www.statssa.gov.za/?page_id=964 (2011b). Accessed 9 July 2019

  18. Charlson, R.T., Schwarz, S.J., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen Jr., J.E., Hofmann, D.J.: Climate forcing by anthropogenic aerosols. Am. Assoc. Adv. Sci. 255(5043), 423–430 (1992)

  19. Chiloane, K.E., Beukes, J.P., van Zyl, P.G., Maritz, P., Vakkari, V., Josipovic, M., Venter, A.D., Jaars, K., Tiitta, P., Kulmala, M., Wiedensohler, A., Liousse, C., Mkhatshwa, G.V., Ramandh, A., Laakso, L.: Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa. Atmos. Chem. Phys. 17(10), 6177–6196 (2017). https://doi.org/10.5194/acp-17-6177-2017

  20. Chow, J., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C.: Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere. 54(2), 185–208 (2004). https://doi.org/10.1016/j.chemosphere.2003.07.004

  21. CIESIN: Center for international Earth Science Information Network (CIESIN). http://sedac.ciesin.columbia.edu/gpw (2010). Accessed 01 August 2010

  22. Collett, K.S., Piketh, S.J., Ross, K.E.: An assessment of the atmospheric nitrogen budget on the South African Highveld. S. Afr. J. Sci. 106(5/6), (2010)

  23. Conradie, E.H., Van Zyl, P.G., Pienaar, J.J., Beukes, J.P., Galy-Lacaux, C., Venter, A.D., Mkhatshwa, G.V.: The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmos. Environ. 146, 113–131 (2016). https://doi.org/10.1016/j.atmosenv.2016.07.033

  24. Draxler, R.R., Hess, G.: Description of the HYSPLIT4 modeling system. NOAA Technical Memorandum ERL ARL-224, 1–27 (1997)

  25. Droughtsa: http://www.droughtsa.org.za/about-the-drought/rainfall-data.html (2019). Accessed 5 August 2019

  26. Engelbrecht, J.P., Swanepoel, L., Chow, J.C., Watson, J.G., Egami, R.T.: PM2.5 and PM10 concentrations from Qalabothjah low-smoke fuels macro-scale experiment in South Africa. Environ. Monit. Assess. 66, 1–15 (2001)

  27. ESKOM: http://www.eskom.co.za/sites/heritage/Pages/Duvha.aspx (2019a). Accessed 5 August 2019

  28. ESKOM: http://www.eskom.co.za/sites/heritage/Pages/MATLAPOWERSTATION.aspx (2019b). Accessed 5 August 2019

  29. Feig, G.T., Vertue, B., Naidoo, S., Ncgukana, N., Mabaso, D.: Measurement of atmospheric black carbon in the Vaal triangle and Highveld priority areas. Clean Air J. Lug. 25(1), 46–50 (2015)

  30. Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., Andreae, M.: Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical properties, and emission data for smoke from African biomass burning. J. Geophys. Res. Atmos. 108(D13), (2003). https://doi.org/10.1029/2002JD002408

  31. Gauderman, W.J., Avol, E., Gilliland, F., Vora, H., Thomas, D., Berhane, K., McConnell, R., Kuenzli, N., Lurmann, F., Rappaport, E.: The effect of air pollution on lung development from 10 to 18 years of age. N. Engl. J. Med. 351(11), 1057–1067 (2004). https://doi.org/10.1056/NEJMoa040610

  32. Gierens, R.T., Henriksson, S., Josipovic, M., Vakkari, V., van Zyl, P.G., Beukes, J.P., Wood, C.R., O’Connor, E.J.: Observing continental boundary-layer structure and evolution over the South African savannah using a ceilometer. Theor. Appl. Climatol. 136, 333–346 (2019). https://doi.org/10.1007/s00704-018-2484-7

  33. Government Gazette: Notice of intention to declare the Vaal Triangel Air-shed Priority Area. Government Gazette 484(28132), (2005a)

  34. Government Gazette: National Environment Management: Air Quality Act, 2004. Government Gazette 476(27318), (2005b)

  35. Government Gazette: Notice of intention to declare the Highveld Priority Area. Government Gazette 396(29846), (2007)

  36. Herich, H., Hueglin, C., Buchmann, B.: A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmos. Meas. Tech. 4, 1409–1420 (2011). https://doi.org/10.5194/amt-4-1409-2011

  37. Herlekar, M., Joseph, A.E., Kumar, R., Gupta, I.: Chemical speciation and source assignment of particulate (PM10) phase molecular markers in Mumbai. Aerosol Air Qual. Res. 12, 1247–1260 (2012). https://doi.org/10.4209/aaqr.2011.07.0091

  38. Hirsikko, A., Tiitta, P., Beukes, J.P., Laakso, L., Vakkari, V.: Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa. Atmos. Chem. Phys. 12, 3951–3967 (2012). https://doi.org/10.5194/acp-12-3951-2012

  39. Hsu, C.Y., Chiang, H.C., Chen, M.J., Chuang, C.Y., Tsen, C.M., Fang, G.C., Tsai, Y.I., Chen, N.T., Lin, T.Y., Lin, S.L., Chen, Y.C.: Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Sci. Total Environ. 590–591, 204–214 (2017). https://doi.org/10.1016/j.scitotenv.2017.02.212

  40. Huttunen, K., Siponen, T., Salonen, I., Yli-Tuomi, T., Aurela, M., Dufva, H., Hillamo, R., Linkola, E., Pekkanen, J., Pennanen, A.: Low-level exposure to ambient particulate matter is associated with systemic inflammation in ischemic heart disease patients. Environ. Res. 116, 44–51 (2012). https://doi.org/10.1016/j.envres.2012.04.004

  41. Hyvärinen, A.-P., Vakkari, V., Laakso, L., Hooda, R., Sharma, V., Panwar, T., Beukes, J.P., Van Zyl, P.G., Josipovic, M., Garland, R.: Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP) at high black carbon mass concentration levels. Atmos. Meas. Tech. 6(1), 81–90 (2013). https://doi.org/10.5194/amt-6-81-2013

  42. Jen, P.H.S., Wu, C.H.: Echo duration selectivity of the bat varies with pulse-echo amplitude difference. Neuroreport. 19(3), 373–377 (2008). https://doi.org/10.1097/WNR.0b013e3282f52c61

  43. Ji, D., Zhang, J., He, J., Wang, X., Pang, B., Liu, Z., Wang, L., Wang, Y.: Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmos. Environ. 125, 293–306 (2016). https://doi.org/10.1016/j.atmosenv.2015.11.020

  44. Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F., Facchini, M., Dingenen, R.V., Ervens, B., Nenes, A., Nielsen, C.: Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5(4), 1053–1123 (2005)

  45. Kleynhans, E.L.J., Neizel, B.W., Beukes, J.P., Van Zyl, P.G.: Utilisation of pre-oxidised ore in the pelletised chromite pre-reduction process. Miner. Eng. 92, 114– 124 (2016). https://doi.org/10.1016/j.mineng.2016.03.005

  46. Kleynhans, E.L.J., Beukes, J.P., Van Zyl, P.G., Bunt, J.R., Nkosi, N.S.B., Venter, M.: The effect of carbonaceous reductant selection on chromite pre-reduction. Metall. Mater. Trans. B. 48(2), 827–840 (2017). https://doi.org/10.1007/s11663-016-0878-4

  47. Korhonen, K., Giannakaki, E., Mielonen, T., Pfüller, A., Laakso, L., Vakkari, V., Baars, H., Engelmann, R., Beukes, J.P., Van Zyl, P.G.: Atmospheric boundary layer top height in South Africa: measurements with lidar and radiosonde compared to three atmospheric models. Atmos. Chem. Phys. 14(8), 4263–4278 (2014). https://doi.org/10.5194/acp-14-4263-2014

  48. Kuik, F., Lauer, A., Beukes, J.P., Van Zyl, P.G., Josipovic, M., Vakkari, V., Laakso, L., Feig, G.T.: The anthropogenic contribution to atmospheric black carbon concentrations in southern Africa: a WRF-Chem modeling study. Atmos. Chem. Phys. 15(15), 8809–8830 (2015). https://doi.org/10.5194/acp-15-8809-2015

  49. Laakso, L., Vakkari, V., Virkkula, A., Laakso, H., Backman, J., Kulmala, M., Beukes, J.P., Van Zyl, P.G., Tiitta, P., Josipovic, M.: South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties. Atmos. Chem. Phys. 12(4), 1847–1864 (2012). https://doi.org/10.5194/acp-12-1847-2012

  50. Lazaridis, M., Semb, A., Larssen, S., Hjellbrekke, A.-G., Hov, Ø., Hanssen, J.E., Schaug, J., Tørseth, K.: Measurements of particulate matter within the framework of the European Monitoring and Evaluation Programme (EMEP): I. First results. Sci. Total. Environ. 285(1), 209–235 (2002). https://doi.org/10.1016/S0048-9697(01)00932-9

  51. Liousse, C., Penner, J., Chuang, C., Walton, J., Eddleman, H., Cachier, H.: A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. Atmos. 101(D14), 19411–19432 (1996). https://doi.org/10.1029/95JD03426

  52. Lourens, A.S., Beukes, J.P., Van Zyl, P.G., Fourie, G.D., Burger, J.W., Pienaar, J.J., Read, C.E., Jordaan, J.H.: Spatial and temporal assessment of gaseous pollutants in the Highveld of South Africa. S. Afr. J. Sci. 107(1/2), 1–8 (2011). https://doi.org/10.4102/sajs.v107i1/2.269

  53. Lourens, A.S.M., Butler, T.M., Beukes, J.P., Van Zyl, P.G., Beirle, S., Wagner, T.K., Heue, K.-P., Pienaar, J.J., Fourie, G.D., Lawrence, M.G.: Re-evaluating the NO hotspot over the south African Highveld. S. Afr. J. Sci. 108(11/12), 1-6 (2012). https://doi.org/10.4102/sajs.v108i11/12.1146

  54. Lourens, A.S.M., Butler, T.M., Beukes, J.P., Van Zyl, P.G., Fourie, G.D., Lawrence, M.G.: Investigating atmospheric photochemistry in the Johannesburg-Pretoria megacity using a box model. S. Afr. J. Sci. 112(1/2), 1–11 (2016). https://doi.org/10.17159/sajs.2016/2015-0169

  55. Mafusire, G., Annegarn, H.J., Vakkari, V., Beukes, J.P., Josipovic, M., Zyl, P.G., Laakso, L.: Submicrometer aerosols and excess CO as tracers for biomass burning air mass transport over southern Africa. J. Geophys. Res. Atmos. 121(17), 10 262-10 282 (2016). https://doi.org/10.1002/2015JD023965

  56. Maritz, P., Beukes, J.P., Van Zyl, P.G., Conradie, E.H., Venter, A.D., Pienaar, J.J., Liousse, C., Galy-Lacaux, C., Castera, P., Ramandh, A.: Spatial and temporal assessment of organic and black carbon at four sites in the interior of South Africa. Clean Air J. 25(1), 20–33 (2015). https://doi.org/10.17159/2410-972X/2015/v25n1a1

  57. Mphepya, J., Pienaar, J., Galy-Lacaux, C., Held, G., Turner, C.: Precipitation chemistry in semi-arid areas of southern Africa: a case study of a rural and an industrial site. J. Atmos. Chem. 47(1), 1–24 (2004)

  58. Mphepya, J., Galy-Lacaux, C., Lacaux, J.P., Held, G., Pienaar, J.J.: Precipitation chemistry and wet deposition in Kruger National Park, South Africa. J. Atmos. Chem. 53(2), 169–183 (2006). https://doi.org/10.1007/s10874-005-9005-7

  59. Mucina, L., Rutherford, M.C. (eds.): The Vegetation of South Africa, Lesotho and Swaziland, South African. Strelitzia 19. South African National Biodiversity Institute, Pretoria (2006)

  60. Petzold, A., Ogren, J.A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N.: Recommendations for reporting "black carbon" measurements. Atmos. Chem. Phys. 13(16), 8365–8379 (2013). https://doi.org/10.5194/acp-13-8365-2013

  61. Pfeiffer, R.: Sampling for PM10 and PM2.5 particulates. Publications from USDA-ARS / UNL Faculty - Micrometeorol. Agric. Syst. 47, 227–245 (2005)

  62. Piketh, S., Van Nierop, M., Rautenbach, C., Walton, N., Ross, K., Holmes, S., Richards, T., Rustenburg Local Municipality Air Quality Management Plan. Gondwana Environmental Solutions (Pty) Ltd, 1–161 (2005)

  63. Pio, C., Cerqueira, M., Harrison, R.M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., de la Campa, A.S., Artíñano, B., Matos, M.: OC/EC ratio observations in Europe: re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 45(34), 6121–6132 (2011). https://doi.org/10.1016/j.atmosenv.2011.08.045

  64. Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44(46), 7520–7540 (2005). https://doi.org/10.1002/anie.200501122

  65. Pretorius, I., Piketh, S., Burger, R., Neomagus, H.: A perspective on south African coal fired power station emissions. J. Energy. S. Afr. 26(3), 27–40 (2015)

  66. Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M.-C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P.: A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 38(16), 2579–2595 (2004). https://doi.org/10.1016/j.atmosenv.2004.01.041

  67. Ramanathan, V., Feng, Y.: Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos. Environ. 43(1), 37–50 (2009). https://doi.org/10.1016/j.atmosenv.2008.09.063

  68. Ricciardelli, I., Bacco, D., Rinaldi, M., Bonafè, G., Scotto, F., Trentini, A., Bertacci, G., Ugolini, P., Zigola, C., Rovere, F., Maccone, C., Pironi, C., Poluzzi, V.: A three-year investigation of daily PM2.5 main chemical components in four sites: the routine measurement program of the Supersito Project (Po Valley, Italy). Atmos. Environ. 152, 418–430 (2017). https://doi.org/10.1016/j.atmosenv.2016.12.052

  69. Riddle, E.E., Voss, P.B., Stohl, A., Holcomb, D., Maczka, D., Washburn, K., Talbot, R.W.: Trajectory model validation using newly developed altitude-controlled balloons during the International Consortium for Atmospheric Research on Transport and Transformations 2004 campaign. J. Geophys. Res. Atmos. 111(D23), (2006). https://doi.org/10.1029/2006JD007456

  70. Roy, D.P., Boschetti, L., Justice, C.O., Ju, J.: The collection 5 MODIS burned area product — global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112(9), 3690–3707 (2008). https://doi.org/10.1016/j.rse.2008.05.013

  71. SAPRIN: South African Population Research Infrastructure Network (2019). http://saprin.mrc.ac.za/. Accessed 18 November 2019

  72. Sasol: https://www.sasol.com/sites/default/files/content/files/mind_over_matter_07_1178173866476_0_1.pdf (2019). Accessed 5 August 2019

  73. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. Wiley, Hoboken (2016)

  74. Sharma, S.K., Sharma, A., Saxena, M., Choudhary, N., Masiwal, R., Mandal, T.K., Sharma, C.: Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi, India. Atmos. Pollut. Res. 7(1), 110–121 (2016). https://doi.org/10.1016/j.apr.2015.08.002

  75. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 3rd edn. Chapman an Hall/CRC Press, Boca Raton (2003)

  76. Siponen, T., Yli-Tuomi, T., Aurela, M., Dufva, H., Hillamo, R., Hirvonen, M.-R., Huttunen, K., Pekkanen, J., Pennanen, A., Salonen, I.: Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients. J. Occup. Environ. Med. 72(4), 277–283 (2015). https://doi.org/10.1136/oemed-2014-102240

  77. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M.: IPCC, 2013: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York (2013)

  78. Stohl, A.: Computation, accuracy and applications of trajectories—a review and bibliography. Atmos. Environ. 32(6), 947–966 (1998). https://doi.org/10.1016/S1352-2310(97)00457-3

  79. Swap, R., Aranibar, J., Dowty, P., Gilhooly, W., Macko, S.A.: Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Glob. Chang. Biol. 10(3), 350–358 (2004). https://doi.org/10.1111/j.1365-2486.2003.00702.x

  80. Thirumalai, K., Singh, A., Ramesh, R.: A MATLAB™ code to perform weighted linear regression with (correlated or uncorrelated) errors in bivariate data. J. Geol. Soc. India. 77(4), 377–380 (2011). https://doi.org/10.1007/s12594-011-0044-1

  81. Tiitta, P., Vakkari, V., Croteau, P., Beukes, J.P., Van Zyl, P.G., Josipovic, M., Venter, A., Jaars, K., Pienaar, J., Ng, N.: Chemical composition, main sources and temporal variability of PM aerosols in southern African grassland. Atmos. Chem. Phys. 14(4), 1909–1927 (2014). https://doi.org/10.5194/acp-14-1909-2014

  82. Tshehla, C., Wright, C.Y.: Spatial and temporal variation of PM10 from industrial point sources in a rural area in Limpopo, South Africa. Int. J. Environ. Res. Public Health. 16, 3455 (2019). https://doi.org/10.3390/ijerph16183455

  83. Tummon, F., Solmon, F., Liousse, C., Tadross, M.: Simulation of the direct and semidirect aerosol effects on the southern Africa regional climate during the biomass burning season. J. Geophys. Res. Atmos. 115(D19), (2010). https://doi.org/10.1029/2009JD013738

  84. Turpin, B., Lim, H.J.: Species Contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 35, 602–610 (2001). https://doi.org/10.1080/02786820119445

  85. Twine, W.C.: Socio-economic transitions influence vegetation change in the communal rangelands of the south African lowveld. Afr J Range For Sci. 22(2), 93–99 (2005). https://doi.org/10.2989/10220110509485866

  86. Tyson, P.D., Preston-Whyte, R.A.: The Weather and Climate of Southern Africa, 2nd edn. Oxford University Press, Cape Town (2000)

  87. Vakkari, V., Kerminen, V.M., Beukes, J.P., Tiitta, P., Zyl, P.G., Josipovic, M., Venter, A.D., Jaars, K., Worsnop, D.R., Kulmala, M.: Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett. 41(7), 2644–2651 (2014). https://doi.org/10.1002/2014GL059396

  88. Vakkari, V., Beukes, J.P., Dal Maso, M., Aurela, M., Josipovic, M., Van Zyl, P.G.: Major secondary aerosol formation in southern African open biomass burning plumes. Nat. Geosci. 11, 580–583 (2018). https://doi.org/10.1038/s41561-018-0170-0

  89. Venter, A.D., Vakkari, V., Beukes, J.P., Van Zyl, P.G., Laakso, H., Mabaso, D., Tiitta, P., Josipovic, M., Kulmala, M., Pienaar, J.J.: An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa. S. Afr. J. Sci. 108(9/10), 1–10 (2012). https://doi.org/10.4102/sajs.v108i9/10.1059

  90. Venter, A.D., van Zyl, P.G., Beukes, J.P., Josipovic, M., Hendriks, J., Vakkari, V., Laakso, L.: Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa. Atmos. Chem. Phys. 17(6), 4251–4263 (2017). https://doi.org/10.5194/acp-17-4251-2017

  91. Vet, R., Artz, R.S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V.C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J.J., Gillett, R., Forti, M.C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N.M., Nickovic, S., Rao, P.S.P., Reid, N.W.: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014). https://doi.org/10.1016/j.atmosenv.2013.10.060

  92. Yttri, K.E., Simpson, D., Nøjgaard, J.K., Kristensen, K., Genberg, J., Stenström, K., Swietlicki, E., Hillamo, R., Aurela, M., Bauer, H., Offenberg, J.H., Jaoui, M., Dye, C., Eckhardt, S., Burkhart, J.F., Stohl, A., Glasius, M.: Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites. Atmos. Chem. Phys. 11, 13339–13357 (2011). https://doi.org/10.5194/acp-11-13339-2011

  93. Zhao, H., Che, H., Zhang, X., Ma, Y., Wang, Y., Wang, H., Wang, Y.: Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res. 4(4), 427–434 (2013). https://doi.org/10.5094/APR.2013.049

Download references

Acknowledgements

The authors acknowledge Sasol and Eskom for financial support to the South African Deposition of Biogeochemical Important Trace Species - International Network to study Deposition and Atmospheric chemistry in Africa (DEBITS-INDAAF) project, as well as the Atmospheric Research in Southern Africa and the Indian Ocean (GDRI-ARSAIO) project for providing financial support to scientists from France and South Africa. DEBITS is also endorsed by the International Global Atmospheric Chemistry (IGAC) programme and the World Meteorological Organisation (WMO). The authors would like to thank Mrs. Carin van der Merwe who visited the measurement sites monthly. The financial assistance of the National Research Foundation (NRF) towards this research is hereby also acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF.

Author information

Correspondence to Johan P. Beukes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14721 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maritz, P., Beukes, J.P., van Zyl, P.G. et al. Temporal and source assessments of organic and elemental carbon at sites in the northern South African interior. J Atmos Chem (2020). https://doi.org/10.1007/s10874-020-09398-2

Download citation

Keywords

  • Elemental carbon (EC)
  • Organic carbon (OC)
  • Open biomass burning
  • Household combustion
  • Deposition of Biogeochemical Important Trace Species (DEBITS)