Advertisement

Journal of Atmospheric Chemistry

, Volume 75, Issue 4, pp 399–410 | Cite as

The impact of long-term regional air mass patterns on nutrient precipitation chemistry and nutrient deposition within a United States grassland ecosystem

  • Matt T. Trentman
Article
  • 221 Downloads

Abstract

Changes in the frequency of precipitation as a result of a changing climate, as well as anthropogenic induced deposition of nitrogen (N), both have the potential to alter grassland productivity and diversity. Central U.S. weather patterns are dominated by three major air mass trajectories including regional sources from the Gulf of Mexico (marine tropical, Mt), the Pacific Northwest (mild pacific, mP), and the Desert Southwest (continental tropical, Ct). In this work, the Hybrid Single Particle Lagrangian Integrated Trajectory model was used to determine trends in the proportion of precipitation events from these air mass sources from 1983 to 2006 relative to Konza Prairie Biological Station (KPBS), KS. The annual volume-weighted mean (VWM) concentrations and wet deposition of a variety of precipitation dissolved solutes were linked to source regions north or south of KPBS. The proportion of precipitation events from Mt significantly increased, while the proportion of events from Ct and mP decreased significantly over the study period. The annual VWM concentrations of most solutes were typically higher from precipitation sourced to the north of KPBS. However, wet deposition of four ecologically relevant solutes (NH4+, NO3, H+, and SO4−2) was higher from events from the southern region, likely due to higher precipitation amounts. The proportion of reduced N increased significantly over the study period but was not affected by source region despite the higher use of fertilizers for agriculture in the northern source region. Given the location of this site relative to three dominant air mass paths, future shifts in these patterns will likely impact wet nutrient deposition.

Keywords

Precipitation chemistry Wet deposition Konza prairie NADP HYSPLIT 

Notes

Acknowledgments

I thank the Konza Long-Term Ecological Research (LTER) programs for support, and funding in part by the United States National Science Foundation Macrosystems grant #EF1065255. Also, the Konza LTER and National Atmospheric Deposition Program for access to data. This manuscript was improved by comments from two anonymous reviewers; the 2014 Hybrid Single Particle Lagrangian Trajectory model workshop at the NOAA Center for Weather and Climate Prediction (NCWCP) in College Park, Maryland; and the 2015 Kansas State Division of Biology Aquatic Journal Club. Comments and advice from Walter Dodds, Victoria Kelly, and William Schlesinger were especially helpful.

Supplementary material

10874_2018_9384_MOESM1_ESM.docx (202 kb)
ESM 1 (DOCX 202 kb)

References

  1. Baumgardner, R.E., Lavery, T.F., Roggers, C.M., Isil, S.S.: Estimates of the atmospheric deposition of sulfur and nitrogen species: clean air status and trends network 1990-2000. Environ Sci Technol. 36, 2614–2629 (2002)CrossRefGoogle Scholar
  2. Bouwman, A.F., Boumans, L.J.M., Batjes, N.H.: Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Global Biogeochem.Cycles. 16(1024), 8-1–8-14 (2002)Google Scholar
  3. Bryson, R.A.: Air masses, streamlines, and the boreal forest. Geographical Bulletin. 8, 228–269 (1966)Google Scholar
  4. Clark, J., Grimm, E., Lynch, J., Mueller, P.: Effects of holocene climate change on the C-4 grassland/woodland boundary in the northern plains, USA. Ecology. 82, 620–636 (2001)Google Scholar
  5. Cohen, M.D., Draxler, R.R., Artz, R., Commoner, B., Bartlett, P., Cooney, P., Couchot, K., Dickar, A., Eisl, H., Hill, C., Quigley, J., Rosenthal, J.E., Niemi, D., Ratte, D., Deslauriers, M., Laurin, R., Mathewson-Brake, L., McDonald, J.: Modeling the atmospheric transport and deposition of PCDD/F to the great lakes. Environ. Sci. Technol. 36, 4831–4845 (2002)CrossRefGoogle Scholar
  6. Du, E., Vries, W., Galloway, J.N., Hu, X., Fang, J.: Changes in wet nitrogen deposition in the United States between 1985 and 2012. Environ. Res. Lett. 9, 095004 (2014)CrossRefGoogle Scholar
  7. Epstein, H.E., Burke, I.C., Luaenroth, W.K.: Regional patterns of decomposition and primary production rates in the US great plains. Ecology. 83, 320–327 (2002)Google Scholar
  8. Fay, P.A., Carlisle, J.D., Knapp, A.K., Blair, J.M., Collins, S.L.: Productivity responses to altered rainfall patterns in a C-4-dominated grassland. Oecologia. 137, 245–251 (2003)CrossRefGoogle Scholar
  9. Fay, P.A., Blair, J.M., Smith, M.D., Nippert, J.B., Carlisle, J.D., Knapp, A.K.: Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences. 8, 3053–3068 (2011)CrossRefGoogle Scholar
  10. Galloway, J.N., Likens, G.E., Edgerton, E.S.: Acid precipitation in the northeastern United States: pH and acidity. Science. 194, 722–724 (1976)CrossRefGoogle Scholar
  11. Heisler-White, J.L., Blair, J.M., Kelly, E.F., Harmoney, K., Knapp, A.K.: Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Chang. Biol. 15, 2894–2904 (2009)CrossRefGoogle Scholar
  12. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D.: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 77, 437–472 (1996)CrossRefGoogle Scholar
  13. Kelly, V.R., Weathers, K.C., Lovett, G.M., Likens, G.E.: Effect of climate change between 1984 and 2007 on precipitation chemistry at a site in northeastern USA. Environ. Sci. Technol. 43, 3461–3466 (2009)CrossRefGoogle Scholar
  14. Knapp, A.K., Beier, C., Briske, D.D., Classen, A.T., Luo, Y., Reichstein, M., Smith, M.D., Smith, S.D., Bell, J.E., Fay, P.A., Heisler, J.L., Leavitt, S.W., Sherry, R., Smith, B., Weng, E.: Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience. 58, 811–821 (2008)CrossRefGoogle Scholar
  15. Kunkel, K.E., Bromirski, P.D., Brooks, H.E., Cavazos, T., Douglas, A.V., Easterling, D.R., Emanuel, K.A., Groisman, P.Y., Holland, G.J., Knutson, T.R., Kossin, J.P., Komar, P.D., Levinson, D.H., Smith, R.L.: Observed changes in weather and climate extremes. In: America, N., Hawaii, C., Pacific Islands, U.S., Karl, T.R., Meehl, G.A., Miller, C.D., Hassol, S.J., Waple, A.M., Murray, W.L. (eds.) A Changing Climate, Regions of Focus, pp. 5–8. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC (2008)Google Scholar
  16. Lal, R., Delgado, J.A., Groffman, P.M., Millar, N., Dell, C., Rotz, A.: Management to mitigate and adapt to climate change. J. Soil Water Conserv. 66, 276–285 (2011)CrossRefGoogle Scholar
  17. Li, Y., Schichtel, B.A., Walker, J.T., Schwede, D.B., Chen, X., Lehmann, C.M.B., Puchalski, M.A., Gay, D.A., Collet Jr., J.L.: Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl. Acad. Sci. U. S. A. 113, 5874–5879 (2016)CrossRefGoogle Scholar
  18. Luaenroth, W.K., Burke, I.C., Gutmann, M.P.: The structure and function of ecosystems in the central north American grassland region. Great Plains Res. 9, 223–259 (1999)Google Scholar
  19. McLauchlan, K.K., Craine, J.M., Nippert, J.B., Ocheltree, T.W.: Lack of eutrophication in a tallgrass prairie ecosystem over 27 years. Ecology. 95, 1225–1235 (2014)CrossRefGoogle Scholar
  20. Nickerson C., Ebel R., Borchers A., Carriazo F.: Major uses of land in the United States. B-89, U.S. Department of Agriculture, Economic Research Service. https://www.ers.usda.gov/publications/pub-details/?pubid=44630 (2011). Accessed 05 October 2017
  21. Omernik, J.M.: Map supplement: ecoregions of the conterminous United States. Annals of the Assoc. Am. Geographers. 77, 118–125 (1987)CrossRefGoogle Scholar
  22. Pardo, L.H., Fenn, M.E., Goodale, C.L., Geiser, L.H., Driscoll, C.T., Allen, E.B., Baron, J.S., Bobbink, R., Bowman, W.D., Clark, C.M., Emmett, B., Gilliam, F.S., Greaver, T.L., Hall, S.J., Lilleskov, E.A., Liu, L., Lynch, J.A., Nadelhoffer, K.J., Perakis, S.S., Robin-Abbott, M.J., Stoddard, J.L., Weathers, K.C., Dennis, R.L.: Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol. Appl. 21, 3049–3082 (2011)CrossRefGoogle Scholar
  23. Ribaudo M., Delgado J., Hansen L., Livingston M., Mosheim R., Williamson J.: Nitrogen in agricultural systems: Implications for conservation policy. ERR-127. U.S. Dept. of Agriculture, Econ. Res. Serv. https://www.ers.usda.gov/publications/pub-details/?pubid=44919 (2011). Accessed 05 October 2017
  24. Rice, K.C., Scanlon, T.M., Lynch, J.A., Cosby, B.J.: Decreased atmospheric sulfur deposition across the southeastern U.S.: when will watersheds release stored sulfate? Environ. Sci. Technol. 46, 10071–10078 (2014)CrossRefGoogle Scholar
  25. Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F.: Noaa's hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015)CrossRefGoogle Scholar
  26. Stevens, C.J., Dise, N.B., Mountford, J.O., Gowing, D.J.: Impact of nitrogen deposition on the species richness of grasslands. Science. 303, 1876–1879 (2004)CrossRefGoogle Scholar
  27. Vet, R., Artz, R.S., Carou, S., Shaw, M., Ro, C.U., Aas, W., Baker, A., Bowersox, V.C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J.J., Gillett, R., Forti, M.C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N.M., Nickovic, S., Rao, P.S.P., Reid, N.W.: A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014)CrossRefGoogle Scholar
  28. Vitousek, P., Mooney, H., Lubchenco, J., Melillo, J.: Human domination of earth's ecosystems. Science. 277, 494–499 (1997)CrossRefGoogle Scholar
  29. Zavaleta, E.S., Shaw, M.R., Chiariello, N.R., Mooney, H.A., Field, C.B.: Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc. Natl. Acad. Sci. U. S. A. 100, 7650–7654 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Division of BiologyKansas State UniversityManhattanUSA
  2. 2.Department of Biological SciencesUniversity of Notre DameNotre DameUSA

Personalised recommendations