Advertisement

Biogenic hydrogen sulphide emissions and non-sea sulfate aerosols over the Indian Sundarban mangrove forest

  • D. Ganguly
  • R. Ray
  • N. Majumdar
  • C. Chowdhury
  • T. K. Jana
Article
  • 48 Downloads

Abstract

Temporal variations in atmospheric hydrogen sulphide concentrations and its biosphere-atmosphere exchanges were studied in the World’s largest mangrove ecosystem, Sundarbans, India. The results were used to understand the possible contribution of H2S fluxes in the formation of atmospheric aerosol of different size classes (e.g. accumulation, nucleation and coarse mode). The mixing ratio of hydrogen sulphide (H2S) over the Sundarban mangrove atmosphere was found maximum during the post-monsoon season (October to January) with a mean value of 0.59 ± 0.02 ppb and the minimum during pre-monsoon (February to May) with a mean value of 0.26 ± 0.01 ppb. This forest acted as a perennial source of H2S and the sediment-air emission flux ranged between 1213 ± 276 μg S m−2 d−1(December) and 457 ± 114 μg S m−2 d−1 (August) with an annual mean of 768 ± 240 μg S m−2d−1. The total annual emissions of H2S from the Indian Sundarban were estimated to be 1.2 ± 0.6 Tg S. The accumulation mode of aerosols was found to be more enriched with non-sea salt sulfate with an average loading of 5.74 μg m−3 followed by the coarse mode (5.18 μg m−3) and nucleation mode (1.18 μg m−3). However, the relative contribution of Non-sea salt sulfate aerosol to total sulfate aerosol was highest in the nucleation mode (83%) followed by the accumulation (73%) and coarse mode (58%). Significant positive relations between H2S flux and different modes of NSS indicated the likely link between H2S, a dominant precursor for the non-sea salt sulfate, and non-sea sulfate aerosol particles. An increase in H2S emissions from the mangrove could result in an increase in enhanced NSS in aerosol and associated cloud albedo, and a decrease in the amount of incoming solar radiation reaching the Sundarban mangrove forest.

Keywords

Non-sea sulfate H2S emission flux Aerosol Mangrove Sundarban 

Notes

Acknowledgments

Financial assistance from the Department of Science and Technology, Government of India, for the study under the FIST program is gratefully acknowledged. Thanks are also due to the Sundarban Biosphere Reserve and Divisional Forest Office, Government of West Bengal, for providing permissions to carry out the experiments.

References

  1. Adams, D.F., Farwell, S.O., Robinson, E., Pack, M.R., Bamesberger,W.L.: Biogenic sulfur source strengths. Environ. Sci. Technol. 15, 1493–1498 (1981)CrossRefGoogle Scholar
  2. Alongi, D.M., Boto, K.G., Robertson, A.I.: Nitrogen and phosphorous cycles. In: Robertson, A.I., Alongi, D.M. (eds.) Tropical Mangrove Ecosystems. AGU, Washington, DC, pp. 251–292 (1992)CrossRefGoogle Scholar
  3. Alongi, D.M., Christoffersen, P., Tirendi, F.: The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. J. Exp. Mar. Biol. Ecol. 171, 201–223 (1993)CrossRefGoogle Scholar
  4. Aneja, V.P.: Natural sulfur emissions into the atmosphere. J. Air Waste Manag. Assoc. 40, 469–476 (1990)CrossRefGoogle Scholar
  5. Aneja, V. P., Overton, Jr., J. H., Cupitt, L. T., Durham, J. L., Wilson, W. E.: Direct measurements of emission rates of some atmospheric biogenic sulfur compounds. Tellus 31, 174–178 (1979)CrossRefGoogle Scholar
  6. Atkinson, R.: Baulch2 D. L., cox, R. a., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J., evaluated kinetic and photochemical data for atmospheric chemistry: volume I - gas phase reactions of O-x, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738 (2004)CrossRefGoogle Scholar
  7. Azad, M.A.K., Ohira, S.I., Oda, M., Tod, K.: On-site measurements of hydrogen sulfide and sulfur dioxide emissions from tidal flat sediments of Ariake Sea, Japan. Atmos. Environ. 39, 6077–6087 (2005)CrossRefGoogle Scholar
  8. Barrett, K.: Oceanic ammonia emissions in the Europe and their trans boundary fluxes. Atmos. Environ. 32, 381–391 (1998)CrossRefGoogle Scholar
  9. Berner, R.A.: Sedimentary pyrite formation: an update. Geochem. Cosmochim. Ac. 48, 605–615 (1984)CrossRefGoogle Scholar
  10. Biswas, H., Mukhopadhyay, S.K., De, T.K., Sen, S., Jana, T.K.: Biogenic controls on the air–water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of bay of Bengal, India. Limnol. Oceanograph. 49, 95–101 (2004)CrossRefGoogle Scholar
  11. Bodenbender, J., Wassmann, R., Papen, H., Rennenberg, H.: Temporal and spatial variation of sulfur-gas-transfer between coastal marine sediments and the atmosphere. Atmos. Environ. 33, 3487–3502 (1999)CrossRefGoogle Scholar
  12. Caldeira, K., Wood, L.: Global and Arctic climate engineering: numerical model studies. Phil. Trans. R. Soc. A. 366, 4039–4056 (2008).  https://doi.org/10.1098/rsta.2008.0132 CrossRefGoogle Scholar
  13. Canfield, D.E., Thamdrup, B., Hansen, J.W.: The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Ac. 57, 3867–3883 (1993)CrossRefGoogle Scholar
  14. Castro, M., Dierberg, F.E.: Biogenic hydrogen sulfide emissions from elected Florida wetlands. Water Air Soil Poll. 33, 1–13 (1987)CrossRefGoogle Scholar
  15. Chakrabarty, K.: Sundarban mangrove in India - a study of conservation status. The Indian Forester. 113, 352–358 (1987)Google Scholar
  16. Charlson, R.J., Wigley, T.M.L.: Sulfate aerosol and climatic change. Sci. Am. 270, 48–57 (1994)CrossRefGoogle Scholar
  17. Chatterjee, A., Dutta, C., Sen, S., Ghosh, K., Biswas, N., Ganguly, D., Jana, T.K.: Formation, transformation, and removal of aerosol over a tropical mangrove forest. J. Geophys. Res. 111:D24302, (2006)  https://doi.org/10.1029/2006JD007144, 1-10
  18. Christian, G.D.: Analytical Chemistry, 5th edn. Wiley, New York (2001)Google Scholar
  19. Crutzen, P.J.: Albedo enhancement by stratospheric sulfur injections: a contribution toresolve a policy dilemma? Clim. Chang. 77, 211–220 (2006)CrossRefGoogle Scholar
  20. Delmas, R., Baudet, J., Servant, J., Baziard, Y. Emissions and concentrations of hydrogen sulfide in the air of tropical forest in the Ivory Coast and of temperate regions in France. Journal of Geophysical Research 85, 4468–4474 (1980)CrossRefGoogle Scholar
  21. Dey, M., Ganguly, D., Chowdhury, C., Majumder, N., Jana, T.K.: Intra-annual variation of modern foraminiferal assemblage in a tropical mangrove ecosystem in India. Wetlands. 32, 813–826 (2012).  https://doi.org/10.1007/s13157-012-0312-x CrossRefGoogle Scholar
  22. Dohnalek, D.A., FitzPatrick, J.A.: The chemistry of reduced Sulphur species and their removal from groundwater supplies. J. Am. Water Works Assoc. 75(6), 298–308 (1983)CrossRefGoogle Scholar
  23. Feilberg, A., Hansen, M.J., Liu, D., Nyord, T.: Contribution of livestock H2S to total sulfur emissions in a region with intensive animal production. NatureCommunications. 8(1069), 1069 (2017).  https://doi.org/10.1038/s41467-017-01016-2 CrossRefGoogle Scholar
  24. Fowler, D., and Duyzer, J. H. : Micrometeorological Techniques for the measurement of tree gas exchange In: M. O. Andreae and D. S. Schimel (eds.) Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp189–207,(1989) John Wiley & Sons Ltd. New YorkGoogle Scholar
  25. Ganguly, D., M. Dey, S. Sen, and T. K. Jana, Biosphere-atmosphere exchange of NOx in the tropical mangrove forest, Journal of Geophysical Research (Biogeosciences), 114, G04014, doi: https://doi.org/10.1029/2008JG000852 (2009)
  26. Gao, Y., Arimoto, R., Duce, R.A., Chen, L.Q., Zhou, M.Y., Gu, D.Y.: Atmospheric non-sea-salt sulfate, nitrate and methane sulfonate over the China Sea. J. Geophys. Res.-Atmos. 101, 12601–12611 (1996)CrossRefGoogle Scholar
  27. Ghahremaninezhad, R., Norman, A.L., Abbatt, J.P.D., Levasseur, M., Thomas, J.L.: Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer. Atmos. Chem. Phys. 16, 5191–5202 (2016)CrossRefGoogle Scholar
  28. Ghosh, A., Dey, N., Bera, A., Tiwari, A., Sathyaniranjan, K.B., Chakrabarti, K., Chattopadhyay, D.: Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline. Syst. 6(1), 1 (2010).  https://doi.org/10.1186/1746-1448-6-1 CrossRefGoogle Scholar
  29. Graedel, T.E., Crutzen, P.J.: Atmospheric change. W. H. Freeman and Company, New york. 296 (1993)Google Scholar
  30. Hansen, M.H., Ingvorsen, K., Jorgensen, B.B.:Mechanisms of Hydrogen-Sulfide Release from Coastal Marine-Sediments to Atmosphere' Limnol. Oceanogr. 23, 68 (1978), 76.Google Scholar
  31. Hansen, J., Lacis, A., Ruedy, R., Sato, M.: Potential climate impact of Mount Pinatubo Eruption. Geophys. Res. Lett. 19, 215–218 (1992)CrossRefGoogle Scholar
  32. Hoigne, J., Bader, H., Haag, W.R., Staehelin, J.: Rate constants of reactions of ozone with organic and inorganic-compounds in water 3. Inorganic-compounds and radicals. Water Res. 19, 993–1004 (1985)CrossRefGoogle Scholar
  33. IPCC: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC 1892 Emission Scenarios. In: Houghton, J.T., Meira Filho, L.G., Bruce, J., Lee, H., Callander, B.A., Haites, E., Harris, N., Maskell, K. (eds.). Cambridge University Press, Cambridge (1994)Google Scholar
  34. Istvan, D., Delaune, R.D.: Formation of volatile sulfur compounds in salt marsh sediment as influenced by soil redox condition. Organic Geochem. 23, 283–287 (1995)CrossRefGoogle Scholar
  35. Jaeschke, W., Georgii, H.W., Claude, H., Malewski, H.: Contributions of H2S to the atmospheric sulfur cycle. Pure Appl. Geophys. 116, 465–475 (1978)CrossRefGoogle Scholar
  36. Jones, A., Roberts, D.L., Slingo, A.: A climate model study of indirect radiative forcing by anthropogenic sulfate aerosols. Nature. 370, 450–453 (1994)CrossRefGoogle Scholar
  37. Kelly, D.P., Smith, N.A.: Organic sulfur compounds in the environment: biogeochemistry, microbiology. and ecological aspects. Adv. Microb. Ecol. 11, 345–385 (1990)CrossRefGoogle Scholar
  38. Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P.A.: Simple parameterisation for flux footprint predictions. Bound.-Layer Meteorol. 112, 503–523 (2004)CrossRefGoogle Scholar
  39. Lacerda, L.D., Carvalho, C.E.V., Tanizaki, K.F., Ovalle, A.R.C., Rezende, C.E.: The biogeochemistry and trace metals distribution of mangrove rhizosphere. Biotropica. 25, 252–257 (1993)CrossRefGoogle Scholar
  40. Lodge, J., James, P.: (Eds.) : methods of air sampling and analysis, 3rd ed. Lewis publishers, Chelsea, M.I. pp. In: 486–492 (1989)Google Scholar
  41. Lugo, A.E., Snedaker, S.C.: The ecology of mangrove. Ann. Rev. Ecol. Syst. 5, 39–64 (1974)CrossRefGoogle Scholar
  42. Mandal, S.K., Majumder, N., Chowdhury, C., Ganguly, D., Dey, M., Jana, T.K.: Adsorption kinetic control of as (III & V) mobilization and sequestration by mangrove sediment. Environ. Earth Sci. 65, 2027–2036 (2011)CrossRefGoogle Scholar
  43. Millero, F.J.: Chemical Oceanography, Second edn. CRC Press, New York (1996)Google Scholar
  44. Murphy, D.M., Anderson, J.R., Quinn, P.K., McInnes, L.M., Brechtel, F.J., Kreidenweis, S.M., Middlebrook, A.M., Pósfai, M., Thomson, D.S., Buseck, P.R.: Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature. 392, 62–65 (1998).  https://doi.org/10.1038/32138 CrossRefGoogle Scholar
  45. Nickerson, N.H., Thibodeau, F.R.: Association between porewater sulfide concentrations and the distribution of mangroves. Biogeochemistry. 1, 183–192 (1985)CrossRefGoogle Scholar
  46. Pal Arya, S.: Introduction to Micrometeorology, Second edn. Academic Press, New York (2001)Google Scholar
  47. Piel, C., Weller, R., Huke, M., Wagenbach, D.: Atmospheric methane sulfonate and non-sea-salt sulfate records at the European project for ice coring in Antarctica (EPICA) deep-drilling site in Dronning Maud land. Antarctica, J. Geophys. Res. Atmos. 111, (2006).  https://doi.org/10.1029/2005JD006213
  48. Pitts Jr., J.N., Finlayson-Pitots, B.J.: Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego (2000)Google Scholar
  49. Rasch, P. J., Tilmes, S., Turco, R. P., Robock, A., Oman, L., Chen, C. C., Stenchikov, G. L., and Garcia, R. R. (2008). An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 366, 4007–4037. doi:  https://doi.org/10.1098/rsta.2008.0131, ISSN: 1364-503X.CrossRefGoogle Scholar
  50. Ray, R., Ganguly, D., Chowdhury, C., Dey, M., Das, S., Dutta, M.K., Mandal, S.K., Majumder, N., De, T.K., Mukhopadhyay, S.K., Jana, T.K.: Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 45, 5016–5024 (2011)CrossRefGoogle Scholar
  51. Ray, R., Majumder, N., Das, S., Chowdhury, C., Jana, T.K.: Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem. east coast of India. Mar. Chem. 167, 33–43 (2014)Google Scholar
  52. Saltzman, E.S., Cooper, D.J.: Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the Caribbean and Gulf of Mexico. J. Atmos. Chem. 7, 191–209 (1988)CrossRefGoogle Scholar
  53. Schlesinger, W.H. : Biogeochemistry: An Analysis of Global Change 2nd ed. Academic Press, San Diego. 558 p. (1997) (Sixth printing, 2003; Spanish edition, 2000)Google Scholar
  54. Schwartz, S.E.: The Whitehouse effect–shortwave radiative forcing of climate by anthropogenic aerosols: an overview. J. Aerosol Sci. 27, 359–382 (1996)CrossRefGoogle Scholar
  55. Steudler, P.A., Peterson, B.J.: Contribution of gaseous Sulphur from salt marshes to the global Sulphur cycle. Nature. 311, 455–457 (1984)CrossRefGoogle Scholar
  56. Tan, C.S., Black, T.A.: Factors affecting the canopy resistance of a Douglas-fir forest. BLM. 10, 475–488 (1976)Google Scholar
  57. Twilley, R. R. and Day J. W., Jr. : The productivity and nutrient cycling of mangrove ecosystems, p. 127-152. In : A. Yáñez-Arancibia Y a. L. Lara-Domínguez (Eds.). Ecosistemas de ManglarenAmérica Tropical. Instituto de Ecología a.C. México, UICN/ORMA, Costa Rica, NOAA/NMFS Silver Spring MD USA. 380 P, (1999)Google Scholar
  58. Wagner-Riddle, C., Thurtell, G.W., King, K.M., Kidd, G.E., Beauchamp, E.G.: Nitrous oxide and carbon dioxide fluxes from a bare soil using a micrometeorological approach. J. Environ. Qual. 25, 898–907 (1996)CrossRefGoogle Scholar
  59. Ward, A.D., Trimble, S.W., Wolman, M.G.: Environmental Hydrology, Edition 2, Chapter 4, p. 95 (2004)Google Scholar
  60. Wesely, M.L., Hicks, B.B.: Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. Journal of Air Pollution Control Association. 27, 1110–1116 (1977)CrossRefGoogle Scholar
  61. Xinhua, L., Zhenlin, Z., Liping, Y., Zhigao S.: Emissions of Biogenic Sulfur Gases (H2S, COS) from Phragmites australis Coastal Marsh in the Yellow River Estuary of China. Chinese Geographical Science 26(6), 770–778 (2016)CrossRefGoogle Scholar
  62. Zhuang, H., Chan, C.K., Fang, M., Waxler, A.S.: Formation of nitrate and non-seas salt sulfate on coarse particles. Atmos. Environ. 33, 422 (1999)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.National Centre for Sustainable Coastal ManagementMoEF&CCNew DelhiIndia
  3. 3.Department of Chemical Oceanography, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations