Journal of Atmospheric Chemistry

, Volume 75, Issue 4, pp 385–398 | Cite as

Atmospheric abundance of HULIS during wintertime in Indo-Gangetic Plain: impact of biomass burning emissions

  • Varun Kumar
  • Prashant Rajput
  • Anubha GoelEmail author


This study reports for the first-time the ambient concentrations of HULIS mass (HULIS-OM, Humic-like substances) and HULIS-C (carbon) in PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) from the Indo-Gangetic Plain (IGP at Kanpur, wintertime). HULIS extraction followed by purification and isolation protocol with methanol: acetonitrile (1:1 v/v) on HLB (Hydrophilic-Lipophilic Balanced) cartridge has been established. Quantification of HULIS-C was achieved on a total organic carbon (TOC) analyser whereas HULIS-OM was determined gravimetrically. Consistently high recovery (> 90%) of HULIS-C based on analysis of Humic standard (sodium salt of Humic acid) suggested suitability of our established analytical protocol involving solvent extraction, purification and accurate quantification of HULIS. HULIS-OM varied from 17.3–38 μg m−3 during daytime and from 19.8–40.6 μg m−3 during night in this study. During daytime the HULIS-OM constituted 20–30% mass fraction of OMTotal and 10–15% of PM10 mass. However, a relatively low contribution of HULIS-OM has been observed during the night. This observation has been attributed to higher concentrations of OM and PM10 in night owing to nighttime chemical reactivity and condensation of organics in conjunction with shallower planetary boundary layer height. Strong correlation of HULIS-C with K+BB (R2 > 0.80) and significant day-night variability of HULIS-C/WSOC ratio in conjunction with air-mass back trajectories (showing transport of pollutants from upwind IGP) suggest biomass burning emission and secondary transformations as important sources of HULIS over IGP. High-loading of atmospheric PM10 (as high as 440 μg m−3) with significant contribution of water-soluble organic aerosols (WSOC/OC: ~ 0.40–0.80) during wintertime highlights their plausible potential role in fog and haze formation and their impact on regional-scale atmospheric radiative forcing over the IGP.


HULIS Biomass burning emission Organic aerosols Indo-Gangetic plain 



We thankfully acknowledge internal funding support from IIT Kanpur. PR is thankful to the Council of Scientific & Industrial Research, New Delhi, India for providing CSIR-Senior Research Associate-ship (Pool Scientist # 8934-A/2017). Authors thank both the anonymous reviewers for their fruitful comments and suggestions and Prof. E. L. Atlas for editorial handling of our manuscript.

Supplementary material

10874_2018_9381_MOESM1_ESM.docx (84 kb)
ESM 1 (DOCX 83 kb)


  1. Albinet, A., Minero, C., Vione, D.: Photochemical generation of reactive species upon irradiation of rainwater: negligible photoactivity of dissolved organic matter. Sci. Total Environ. 408(16), 3367–3373 (2010)CrossRefGoogle Scholar
  2. Andreae, M.O.: Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science. 220(4602), 1148–1151 (1983)CrossRefGoogle Scholar
  3. Baduel, C., Voisin, D., Jaffrezo, J.L.: Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmos. Chem. Phys. 10(9), 4085–4095 (2010)CrossRefGoogle Scholar
  4. Birch, M.E., Cary, R.A.: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25(3), 221–241 (1996)CrossRefGoogle Scholar
  5. Castro, L.M., Pio, C.A., Harrison, R.M., Smith, D.J.T.: Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos. Environ. 33(17), 2771–2781 (1999)CrossRefGoogle Scholar
  6. Chakraborty, A., et al.: Water soluble organic aerosols in Indo-Gangetic Plain (IGP): Insights from aerosol mass spectrometry. Sci. Total Environ. 599–600, 1573–1582 (2017)CrossRefGoogle Scholar
  7. Choudhary, V., Rajput, P., Singh, D.K., Singh, A.K., Gupta, T.: Light absorption characteristics of brown carbon during foggy and non-foggy episodes over the Indo-Gangetic plain. Atmos. Pollut. Res. 9, 494–501 (2018). CrossRefGoogle Scholar
  8. Claeys, M., Vermeylen, R., Yasmeen, F., Gómez-González, Y., Chi, X., Maenhaut, W., Mészáros, T., Salma, I.: Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/Vis photodiode array detection and electrospray ionisation mass spectrometry. Environ. Chem. 9(3), 273–284 (2012)CrossRefGoogle Scholar
  9. Decesari, S., Facchini, M.C., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A.R., Smith, D.M.: Water soluble organic compounds formed by oxidation of soot. Atmos. Environ. 36(11), 1827–1832 (2002)CrossRefGoogle Scholar
  10. Dinar, E., Taraniuk, I., Graber, E.R., Katsman, S., Moise, T., Anttila, T., Mentel, T.F., Rudich, Y.: Cloud condensation nuclei properties of model and atmospheric HULIS. Atmos. Chem. Phys. 6(9), 2465–2482 (2006)CrossRefGoogle Scholar
  11. Draxler, R.R., Rolph, G.D.: HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring (2003). Google Scholar
  12. Duarte, R.M.B.O., Santos, E.B.H., Pio, C.A., Duarte, A.C.: Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmos. Environ. 41(37), 8100–8113 (2007)CrossRefGoogle Scholar
  13. Falkovich, A.H., Graber, E.R., Schkolnik, G., Rudich, Y., Maenhaut, W., Artaxo, P.: Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmos. Chem. Phys. 5(3), 781–797 (2005)CrossRefGoogle Scholar
  14. Fan, X., Song, J., Peng, P.A.: Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM2.5 at Guangzhou, China. Atmos. Res. 172–173, 8–15 (2016a)CrossRefGoogle Scholar
  15. Fan, X., et al.: Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels. Atmos. Chem. Phys. Discuss. 2016, 1–39 (2016b)Google Scholar
  16. Feczko, T., Puxbaum, H., Kasper-Giebl, A., Handler, M., Limbeck, A., Gelencsér, A., Pio, C., Preunkert, S., Legrand, M.: Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe. J. Geophys. Res. Atmos. 112(D23), (2007).
  17. Fu, P.Q., Kawamura, K., Pavuluri, C.M., Swaminathan, T., Chen, J.: Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmos. Chem. Phys. 10(6), 2663–2689 (2010)CrossRefGoogle Scholar
  18. Graber, E.R., Rudich, Y.: Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 6(3), 729–753 (2006)CrossRefGoogle Scholar
  19. Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G.P., Artaxo, P., Andreae, M.O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 6(11), 3563–3570 (2006)CrossRefGoogle Scholar
  20. Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J.: Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5(4), 1053–1123 (2005)CrossRefGoogle Scholar
  21. Kaul, D.S., Gupta, T., Tripathi, S.N., Tare, V., Collett Jr., J.L.: Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ. Sci. Technol. 45(17), 7307–7313 (2011)CrossRefGoogle Scholar
  22. Kawamura, K., Imai, Y., Barrie, L.A.: Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events. Atmos. Environ. 39(4), 599–614 (2005)CrossRefGoogle Scholar
  23. Keene, W.C., Pszenny, A.A.P., Galloway, J.N., Hawley, M.E.: Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. Atmos. 91(D6), 6647–6658 (1986)CrossRefGoogle Scholar
  24. Kiss, G., et al.: Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. J. Geophys. Res. Atmos. 107(D21), 8339 (2002)CrossRefGoogle Scholar
  25. Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A., Mészáros, T., Sárvári, Z., Temesi, D., Varga, B., Baltensperger, U., Nyeki, S., Weingartner, E.: Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. J. Atmos. Chem. 39(3), 235–259 (2001)CrossRefGoogle Scholar
  26. Krivácsy, Z., Kiss, G., Ceburnis, D., Jennings, G., Maenhaut, W., Salma, I., Shooter, D.: Study of water-soluble atmospheric humic matter in urban and marine environments. Atmos. Res. 87(1), 1–12 (2008)CrossRefGoogle Scholar
  27. Kumar, V., Goel, A., Rajput, P.: Compositional and surface characterization of HULIS by UV-Vis, FTIR, NMR and XPS: Wintertime study in Northern India. Atmos. Environ. 164, 468–475 (2017)CrossRefGoogle Scholar
  28. Lin, P., Huang, X.F., He, L.Y., Zhen Yu, J.: Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. J. Aerosol Sci. 41(1), 74–87 (2010)CrossRefGoogle Scholar
  29. Ming, Y., Ramaswamy, V., Ginoux, P.A., Horowitz, L.H.: Direct radiative forcing of anthropogenic organic aerosol. J. Geophys. Res. 110(D20), D20208 (2005)CrossRefGoogle Scholar
  30. Pavlovic, J., Hopke, P.K.: Chemical nature and molecular weight distribution of the water-soluble fine and ultrafine PM fractions collected in a rural environment. Atmos. Environ. 59, 264–271 (2012)CrossRefGoogle Scholar
  31. Qiao, T., et al.: Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Sci. Total Environ. 557–558, 386–394 (2016)CrossRefGoogle Scholar
  32. Rajeev, P., Rajput, P., Gupta, T.: Chemical characteristics of aerosol and rain water during an El Niño and PDO influenced Indian summer monsoon. Atmos. Environ. 145, 192–200 (2016)CrossRefGoogle Scholar
  33. Rajput, P.: OM/OC ratio of polar and non-polar organic matter during wintertime from Indo-Gangetic plain: implications to regional-scale radiative forcing. Aerosol Science and Engineering. 2, 153–164 (2018). CrossRefGoogle Scholar
  34. Rajput, P., Sarin, M.M.: Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in northern India: implications to organic mass-to-organic carbon ratio. Chemosphere. 103(0), 74–79 (2014)CrossRefGoogle Scholar
  35. Rajput, P., Sarin, M.M., Rengarajan, R., Singh, D.: Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic plain: isomer ratios and temporal trends. Atmos. Environ. 45(37), 6732–6740 (2011)CrossRefGoogle Scholar
  36. Rajput, P., Sarin, M.M., Kundu, S.S.: Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE-Himalaya: abundances and chemical characteristics. Atmos. Pollut. Res. 4(2), 214–221 (2013)CrossRefGoogle Scholar
  37. Rajput, P., Sarin, M., Sharma, D., Singh, D.: Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. Tellus-B. 66, (2014a).
  38. Rajput, P., Sarin, M.M., Sharma, D., Singh, D.: Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon. Environ. Sci. Process. Impacts. 16(0), 2371–2379 (2014b)CrossRefGoogle Scholar
  39. Rajput, P., et al.: Wintertime source-apportionment of PM1 from Kanpur in the indo-Gangetic plain. Clim. Chang. 1(4), 503–507 (2015)Google Scholar
  40. Rajput, P., Gupta, T., Kumar, A.: The diurnal variability of sulfate and nitrate aerosols during wintertime in the Indo-Gangetic plain: implications for heterogeneous phase chemistry. RSC Adv. 6(92), 89879–89887 (2016)CrossRefGoogle Scholar
  41. Rajput, P., Anjum, M.H., Gupta, T.: One year record of bioaerosols and particles concentration in Indo-Gangetic Plain: Implications of biomass burning emissions to high-level of endotoxin exposure. Environ. Pollut. 224, 98–106 (2017)CrossRefGoogle Scholar
  42. Rajput, P., Singh, D.K., Singh, A.K., Gupta, T.: Chemical composition and source-apportionment of sub-micron particles during wintertime over Northern India: New insights on influence of fog-processing. Environ. Pollut. 233, 81–91 (2018)CrossRefGoogle Scholar
  43. Ramanathan, V., Ramana, M.V., Roberts, G., Kim, D., Corrigan, C., Chung, C., Winker, D.: Warming trends in Asia amplified by brown cloud solar absorption. Nature. 448(7153), 575–578 (2007)CrossRefGoogle Scholar
  44. Rengarajan, R., Sarin, M.M., Sudheer, A.K.: Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J. Geophys. Res. Atmos. 112(D21), D21307 (2007)CrossRefGoogle Scholar
  45. Salma, I., Ocskay, R., Chi, X., Maenhaut, W.: Sampling artefacts, concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment. Atmos. Environ. 41(19), 4106–4118 (2007)CrossRefGoogle Scholar
  46. Salma, I., Mészáros, T., Maenhaut, W., Vass, E., Majer, Z.: Chirality and the origin of atmospheric humic-like substances. Atmos. Chem. Phys. 10(3), 1315–1327 (2010)CrossRefGoogle Scholar
  47. Salma, I., Mészáros, T., Maenhaut, W.: Mass size distribution of carbon in atmospheric humic-like substances and water soluble organic carbon for an urban environment. J. Aerosol Sci. 56, 53–60 (2013)CrossRefGoogle Scholar
  48. Samburova, V., Szidat, S., Hueglin, C., Fisseha, R., Baltensperger, U., Zenobi, R., Kalberer, M.: Seasonal variation of high-molecular-weight compounds in the water-soluble fraction of organic urban aerosols. J. Geophys. Res. Atmos. 110(D23), (2005).
  49. Samburova, V., Connolly, J., Gyawali, M., Yatavelli, R.L.N., Watts, A.C., Chakrabarty, R.K., Zielinska, B., Moosmüller, H., Khlystov, A.: Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci. Total Environ. 568, 391–401 (2016)CrossRefGoogle Scholar
  50. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics - from Air Pollution to Climate Change, 2nd edn. John Wiley & Sons, New York (2006)Google Scholar
  51. Singh, A., et al.: Black Carbon and Elemental Carbon from Postharvest Agricultural-Waste Burning Emissions in the Indo-Gangetic Plain. Adv. Meteorol. 2014, 10 (2014)Google Scholar
  52. Song, J., He, L., Peng, P.’., Zhao, J., Ma, S.: Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou. South China. Aerosol Sci. Technol. 46(5), 533–546 (2012)CrossRefGoogle Scholar
  53. Sorathia, F., Rajput, P., Gupta, T.: Dicarboxylic acids and levoglucosan in aerosols from Indo-Gangetic Plain: Inferences from day night variability during wintertime. Sci. Total Environ. 624, 451–460 (2018)CrossRefGoogle Scholar
  54. Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96(12), 2059–2077 (2015)CrossRefGoogle Scholar
  55. Sullivan, A.P., et al.: A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: results from an urban site. Geophys. Res. Lett. 31(13), L13105 (2004)CrossRefGoogle Scholar
  56. Turpin, B.J., Lim, H.-J.: Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass. Aerosol Sci. Technol. 35(1), 602–610 (2001)CrossRefGoogle Scholar
  57. Varga, B., Kiss, G., Ganszky, I., Gelencsér, A., Krivácsy, Z.: Isolation of water-soluble organic matter from atmospheric aerosol. Talanta. 55(3), 561–572 (2001)CrossRefGoogle Scholar
  58. Weber, R.J., et al.: A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J. Geophys. Res. Atmos. 112(D13), D13302 (2007)CrossRefGoogle Scholar
  59. Yamasoe, M.R.A., Artaxo, P., Miguel, A.H., Allen, A.G.: Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos. Environ. 34(10), 1641–1653 (2000)CrossRefGoogle Scholar
  60. Yue, S., Ren, H., Fan, S., Sun, Y., Wang, Z., Fu, P.: Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Sci. Rep. 6, 29618 (2016)CrossRefGoogle Scholar
  61. Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M.C., Gelencsér, A., Kiss, G., Krivácsy, Z., Molnár, Á., Mészáros, E., Hansson, H.C., Rosman, K., Zebühr, Y.: Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmos. Environ. 33(17), 2733–2743 (1999)CrossRefGoogle Scholar
  62. Zhang, F., Li, Z., Li, Y., Sun, Y., Wang, Z., Li, P., Sun, L., Wang, P., Cribb, M., Zhao, C., Fan, T., Yang, X., Wang, Q.: Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China. Atmos. Chem. Phys. 16(8), 5413–5425 (2016)CrossRefGoogle Scholar
  63. Zheng, G., He, K., Duan, F., Cheng, Y., Ma, Y.: Measurement of humic-like substances in aerosols: A review. Environ. Pollut. 181, 301–314 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering and APTL at Center for Environmental Science and Engineering (CESE)IIT KanpurKanpurIndia
  2. 2.Laboratory for Atmospheric ChemistryPaul Scherrer InstituteVilligenSwitzerland

Personalised recommendations