Non-traditional stable isotope geochemistry of marine ferromanganese crusts and nodules

  • Yazhou FuEmail author


Marine ferromanganese crusts and nodules, which contain a variety of metals, are potential seabed mineral resources. Given their low growth rates, they are regarded as condensed stratigraphic sections that archive millions of years of paleoceanographic information. Ferromanganese crusts and nodules incorporate trace elements like Cu, Zn, Mo, Tl and Ni during growth. The non-traditional isotopic systems of these metals are increasingly being developed as powerful tracers in the modern ocean and as proxies for the paleo-ocean, due to their tendency to be fractionated by redox-related and/or biological processes. In recent years, both the global variations of metal stable isotopes in ferromanganese crust/nodule surface scrapings and some depth profiles through the ferromanganese crusts were systematically analysed. These studies established the isotopic variability present in ferromanganese crusts, nodules and seawater, explored the isotopic fractionation mechanisms associated with the formation of ferromanganese deposits, and determined whether these ferromanganese crusts can be used as documents of deep water metal isotope compositions and long-term seawater isotope variations. In addition, some isotopes of ferromanganese deposits have been successfully applied to constrain the metal sources and geochemical cycles in the ocean, reconstruct paleo-oceanic redox conditions and seawater isotope record, and reveal continental weathering and climate changes. Nevertheless, it is worth noting that a few limitations of current applications of some non-traditional isotopes as paleoceanographic proxies still remain. Therefore, there is still a great need for a community effort to develop and enhance non-traditional isotope geochemistry of marine ferromanganese crusts and nodules.


Marine ferromanganese crusts and nodules Seawater Isotope composition Isotopic fractionation Non-traditional stable isotopes 



Rare earth element


Thermal ionization mass spectrometry


Multiple collector inductively coupled plasma mass spectrometry


X-Ray absorption near edge structure


Extended X-ray absorption fine structure



The author greatly thank referees for their careful review of this manuscript and their helpful comments and suggestions.


This work was supported by the National Nature Science Foundation of China (Nos. 41173020 and 41376080).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.


  1. Albarède F (2004) The stable isotope geochemistry of Copper and Zinc. Rev Mineral Geochem 55:409–427CrossRefGoogle Scholar
  2. Albarède F, Beard B (2004) Analytical methods for non-traditional isotopes. Rev Mineral Geochem 55:113–152CrossRefGoogle Scholar
  3. Anbar AD (2004) Molybdenum stable isotopes: observations, interpretations and directions. Rev Mineral Geochem 55:429–454CrossRefGoogle Scholar
  4. Anbar AD, Rouxel O (2007) Metal stable isotopes in paleoceanography. Annu Rev Earth Planet Sci 35(1):717–746CrossRefGoogle Scholar
  5. Baker RGA, Rehkämper M, Hinkley TK, Nielsen SG, Toutain JP (2009) Investigation of thallium fluxes from subaerial volcanism-Implications for the present and past mass balance of thallium in the oceans. Geochim Cosmochim Acta 73:6340–6359CrossRefGoogle Scholar
  6. Banakar VK, Hein JR (2000) Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean. Mar Geol 162:529–540CrossRefGoogle Scholar
  7. Barling J, Anbar AD (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett 217:315–329CrossRefGoogle Scholar
  8. Barling J, Arnold JL, Anbar AD (2001) Natural mass dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett 193:447–457CrossRefGoogle Scholar
  9. Batley GE, Florence TM (1975) Determination of thallium in natural waters by anodic stripping voltametry. Electroanal Chem Interface Electrochem 61:205–211CrossRefGoogle Scholar
  10. Beard BL, Johnson CM (2004) Fe isotope variations in the modern and ancient earth and other planetary bodies. Rev Mineral Geochem 55:319–357CrossRefGoogle Scholar
  11. Beard BL, Johnson CM, Von Damm KL, Poulson RL (2003) Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31:629–632CrossRefGoogle Scholar
  12. Bermin J, Vance D, Archer C, Statham PJ (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chem Geol 226:280–297CrossRefGoogle Scholar
  13. Berner BA (2004) A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. Am J Sci 304:438–453CrossRefGoogle Scholar
  14. Berner EK, Berner BA (1987) The global water cycle: geochemistry and environment. Prentice-Hall, Englewood Cliffs, p 80Google Scholar
  15. Bewers JM, Yeats PA (1977) Oceanic residence times of trace-metals. Nature 268(5621):595–598CrossRefGoogle Scholar
  16. Bruland KW (1989) Complexation of zinc by natural organic ligands in the Central North Pacific. Limnol Oceanogr 34(2):269–285CrossRefGoogle Scholar
  17. Bruland KW, Lohan MC (2003) Controls of trace metals in seawater. Treatise Geochem 6:23–47CrossRefGoogle Scholar
  18. Bryan AL, Dong S, Wilkes EB, Wasylenki LE (2015) Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength. Geochim Cosmochim Acta 157:182–197CrossRefGoogle Scholar
  19. Burton KW, Bourdon B, Birck JL (1999) Osmium isotope variations in the oceans recorded by Fe–Mn crusts. Earth Planet Sci Lett 171:185–197CrossRefGoogle Scholar
  20. Cameron V, Vance D (2014) Heavy nickel isotope compositions in rivers and the oceans. Geochim Cosmochim Acta 128:195–211CrossRefGoogle Scholar
  21. Cameron V, Vance D, Archer C, House CH (2009) A biomarker based on the stable isotopes of nickel. Proc Natl Acad Sci USA 106:10944–10948CrossRefGoogle Scholar
  22. Chan LH, Edmond JM (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717CrossRefGoogle Scholar
  23. Chan LH, Hein JR (2007) Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean. Deep-Sea Res II 54(11–13):1147–1162CrossRefGoogle Scholar
  24. Chen TY, Ling HF, Hu R, Frank M, Jiang SY (2013) Lead isotope provinciality of central North Pacific Deep Water over the Cenozoic. Geochem Geophys Geosyst 14:1523–1537CrossRefGoogle Scholar
  25. Chever F, Rouxel OJ, Croot PL, Ponzevera E, Wuttig K, Auro M (2015) Total dissolvable and dissolved iron isotopes in the water column of the Peru upwelling regime. Geochim Cosmochim Acta 162(1):66–82CrossRefGoogle Scholar
  26. Christensen JN, Halliday AN, Godfrey LV (1997) Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts. Science 277:913–918CrossRefGoogle Scholar
  27. Chu N-C, Johnson CM, Beard BL, German CR, Nesbitta RW, Frank M, Marcel B, Kubik PW, Usui A, Graham I (2006) Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time. Earth Planet Sci Lett 245:202–217CrossRefGoogle Scholar
  28. Coale KH, Bruland KW (1988) Copper complexation in the Northeast Pacific. Limnol Oceanogr 33(5):1084–1101CrossRefGoogle Scholar
  29. Coale KH, Bruland KW (1990) Spatial and temporal variability in copper complexation in the North Pacific. Deep Sea Research Part A. Oceanogr Res Papers 37(2):317–336CrossRefGoogle Scholar
  30. Collier RW (1985) Molybdenum in the northeast Pacific Ocean. Limnol Oceanogr 30:1351–1354CrossRefGoogle Scholar
  31. Collier RW, Edmond JM (1984) The trace element geochemistry of marine biogenic particulate matter. Prog Oceanogr 13(2):113–199CrossRefGoogle Scholar
  32. Conrad T, Hein JR, Paytan A, Clague DA (2017) Formation of Fe–Mn crusts within a continental margin environment. Ore Geol Rev 87:25–40CrossRefGoogle Scholar
  33. Conway TM, John SG (2014) The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Global Biogeochem Cycles 28:1111–1128CrossRefGoogle Scholar
  34. Conway TM, John SG (2015) The cycling of iron, zinc and cadmium in the North East Pacific Ocean—insights from stable isotopes. Geochim Cosmochim Acta 164:262–283CrossRefGoogle Scholar
  35. Dahl TW, Chappaz C, Fitts JP, Lyons TW (2013) Molybdenum reduction in a sulfidic lake: evidence from X-ray absorption fine-structure spectroscopy and implications for the Mo paleoproxy. Geochim Cosmochim Acta 103(15):213–231CrossRefGoogle Scholar
  36. Dauphas N, Pourmand A, Teng FZ (2009) Routine isotopic analysis of iron by HR-MC-ICPMS: how precise and how accurate? Chem Geol 267(3–4):175–184CrossRefGoogle Scholar
  37. de Villiers S, Dickson JAD, Ellam RM (2005) The composition of the continental river weathering flux deduced from seawater Mg isotopes. Chem Geol 216:133–142CrossRefGoogle Scholar
  38. Edmond JM, Measures C, McDuff RE, Chan LH, Collier R, Grant B, Gordon LI, Corliss JB (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet Sci Lett 46:1–18CrossRefGoogle Scholar
  39. Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224CrossRefGoogle Scholar
  40. Erickson BE, Helz GR (2000) Molybdenum (VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim Cosmochim Acta 64(7):1149–1158CrossRefGoogle Scholar
  41. Firdaus LM, Norisuye K, Nakagawa Y, Nakatsuka S, Sohrin Y (2008) Dissolved and labile particulate Zr, Hf, Nb, Ta, Mo and W in the western North Pacific Ocean. J Oceanogr 64:247–257CrossRefGoogle Scholar
  42. Fitzsimmons JN, Carrasco GG, Wu J, Roshan M, Hatta M, Measures CI, Conway TM, John SG, Boyle EA (2015) Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the U.S. GEOTRACES North Atlantic Transect. Deep Sea Res Part II 116:130–151CrossRefGoogle Scholar
  43. Flegal AR, Patterson CC (1985) Thallium concentrations in seawater. Mar Chem 15(4):327–331CrossRefGoogle Scholar
  44. Frank M (2002) Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev Geophys 40(1):1–38CrossRefGoogle Scholar
  45. Frank M, O’Nions RK, Hein JR, Banakar VK (1999) 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: reconstruction of seawater paleochemistry. Geochim Cosmochim Acta 63:1689–1708CrossRefGoogle Scholar
  46. Frew R, Bowie A, Croot P, Pickmere S (2001) Macronutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. Deep-Sea Res II 48:2467–2481CrossRefGoogle Scholar
  47. Fu YZ, Wang ZR (2012) Mg isotope variation in a ferromanganese crust from Line Seamount in the Central Pacific Ocean. Mineral Mag 76(6):1722Google Scholar
  48. Fu YZ, Peng JT, Qu WJ, Hu RZ, Shi XF, Du AD (2005) Os isotopic compositions of a cobalt-rich ferromanganese crust profile in Central Pacific. Chin Sci Bull 50(18):2106–2112CrossRefGoogle Scholar
  49. Gaillardet J, Viers J, Dupre B (2003) Trace elements in river waters. Treatise Geochem Surf Ground Water Weather Soils 5:225–272Google Scholar
  50. Gall L, Williams HM, Siebert C (2013) Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic. Earth Planet Sci Lett 375:148–155CrossRefGoogle Scholar
  51. Galy A, Belshaw NS, Halicz L, O’Nions RK (2001) High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry. Int J Mass Spectrom 208(1–3):89–98CrossRefGoogle Scholar
  52. Galy A, Yoffe O, Janney PE, Williams RW, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon ID, Ramon E, Carignan J (2003) Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal Spectrom 18:1352–1356CrossRefGoogle Scholar
  53. Goldberg T, Archer C, Vance D, Poulton SW (2009) Mo isotope fractionation during adsorption to Fe (oxyhydr) oxides. Geochim Cosmochim Acta 73:6502–6516CrossRefGoogle Scholar
  54. Goto KT, Shimoda G, Anbar AD, Gordon GW, Harigane Y, Senda R, Suzuki K (2015) Molybdenum isotopes in hydrothermal manganese crust from the Ryukyu arc system: implications for the source of molybdenum. Mar Geol 369:91–99CrossRefGoogle Scholar
  55. Gramlish J, Machlan L, Barnes I, Paulsen P (1989) Absolute isotopic abundance ratios and atomic weight of a reference sample of nickel. J Res Natl Inst Stand Tech 94:347–356CrossRefGoogle Scholar
  56. Gueguen B, Rouxel O, Rouget ML, Bollinger C, Ponzevera E, Germain Y, Fouquet Y (2016) Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers. Geochim Cosmochim Acta 189:214–235CrossRefGoogle Scholar
  57. Halliday AN, Lee DC, Christensen JN, Walder AJ, Freedman PA, Jones CE, Hall CM, Yi W, Teagle D (1995) Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry. Int J Mass Spectrom Ion Processes 146–147(31):21–33CrossRefGoogle Scholar
  58. Hein JR (2004) Cobalt-rich ferromanganese crusts: Global distribution, composition, origin, and research activities, minerals other than polymetallic nodules of the international seabed area, chapter: 5. International Seabed Authority, Kingston, pp 188–256Google Scholar
  59. Hein JR, Koschinsky A (2014) Deep-ocean ferromanganese crusts and nodules. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, 2nd edn, volume 13, chapter 11. Elsevier, Amsterdam, pp 273–291CrossRefGoogle Scholar
  60. Hein JR, Koschinsky A, Bau M, Manheim FT, Kang JK, Roberts L (2000) Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton, pp 239–279Google Scholar
  61. Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14CrossRefGoogle Scholar
  62. Hoefs J (2015) Stable isotope geochemistry, 7th edn. Springer International Publishing, BerlinCrossRefGoogle Scholar
  63. Horner TJ, Schönbächler M, Rehkämper M, Nielsen SG, Williams H, Halliday AN, Xue Z, Hein JR (2010) Ferromanganese crusts as archives of deep water Cd isotope compositions. Geochem Geophys Geosyst 11(4):1–10CrossRefGoogle Scholar
  64. Horner TJ, Williams HM, Hein JR, Saito MA, Burton KW, Halliday AN, Nielsen SG (2015) Persistence of deeply sourced iron in the Pacific Ocean. PNAS 112:1292–1297CrossRefGoogle Scholar
  65. Huh Y, Chan LH, Zhang L, Edmond JM (1998) Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim Cosmochim Acta 62:2039–2051CrossRefGoogle Scholar
  66. Huh Y, Chan LH, Edmond JM (2001) Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci Lett 194:189–199CrossRefGoogle Scholar
  67. Jiang SY, Jon W, Yu JM, Pan JY, Liao QL, Wu NP (2000) A reconnaissance of Cu isotope composition of hydrothermal copper deposit, Jinman, Yunnan, China. Chin Sci Bull 47(3):247–250CrossRefGoogle Scholar
  68. Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161CrossRefGoogle Scholar
  69. Juillot F, Marechal C, Ponthieu M (2008) Zn isotopic fractionation caused by sorption on goethite and 2-lines ferrihydrite. Geochim Cosmochim Acta 72:4886–4900CrossRefGoogle Scholar
  70. Kashiwabara T, Takahashi Y, Tanimizu M, Usui A (2011) Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochim Cosmochim Acta 75(19):5762–5784CrossRefGoogle Scholar
  71. Klemm V, Levasseur S, Frank M, Hein JR, Halliday AN (2005) Osmium isotope stratigraphy of a marine ferromanganese crust. Earth Planet Sci Lett 238:42–48CrossRefGoogle Scholar
  72. Kurzweil F, Wille M, Schoenberg R, Taubald H, Van Kranendonk MJ (2015) Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin. Geochim Cosmochim Acta 164:523–542CrossRefGoogle Scholar
  73. Lacan F, Francois R, Ji YC, Sherrell RM (2006) Cadmium isotopic composition in the ocean. Geochim Cosmochim Acta 70(20):5104–5118CrossRefGoogle Scholar
  74. Lee DC, Halliday AN, Hein JR, Burton KW, Christensen JN, Gunther D (1999) Hafnium isotope stratigraphy of ferromanganese crusts. Science 285:1052–1054CrossRefGoogle Scholar
  75. Levasseur S, Frank M, Hein JR (2004) The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: implications for seawater chemistry? Earth Planet Sci Lett 224(1/2):91–105CrossRefGoogle Scholar
  76. Li H-Y, Schoonmaker J (2003) Chemical composition and mineralogy of marine sediments. Treatise Geochem Sediments Diagenesis Sediment Rocks 7:1–35Google Scholar
  77. Ling HF, Burton KW, Onions RK, Kamber BS, von Blanckenburg F, Gibb AJ, Hein JR (1997) Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet Sci Lett 146(1–2):1–12CrossRefGoogle Scholar
  78. Ling HF, Jiang SY, Frank M, Zhou HY, Zhou F, Lu ZL, Chen XM, Jiang YH, Ge CD (2005) Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean. Earth Planet Sci Lett 232(3–4):345–361CrossRefGoogle Scholar
  79. Little SH, Vance D, Walker-Brown C, Landing WM (2014a) The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs and oxic outputs in ferromanganese crusts. Geochim Cosmochim Acta 125:673–693CrossRefGoogle Scholar
  80. Little SH, Sherman DM, Vance D (2014b) Molecular controls on Cu and Zn isotopic fractionation in Fe–Mn crusts. Earth Planet Sci Lett 396:213–222CrossRefGoogle Scholar
  81. Little SH, Vance D, Lyons TW, McManus J (2015) Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings. Am J Sci 315:77–119CrossRefGoogle Scholar
  82. Little SH, Vance D, McManus J, Severmann S (2016) Critical role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes. Geology 44:207–210CrossRefGoogle Scholar
  83. Mackey D, O’Sullivan J, Watson R, DalPont G (2002) Trace metals in the Western Pacific: temporal and spatial variability in the concentrations of Cd, Cu, Mn and Ni. Deep-Sea Res I 49:2241–2259CrossRefGoogle Scholar
  84. Marcus MA, Edwards KJ, Gueguen B, Fakra SC, Horn G, Jelinski NA, Rouxel O, Sorensen J, Toner BM (2015) Iron mineral structure, reactivity, isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma. Geochim Cosmochim Acta 171:61–79CrossRefGoogle Scholar
  85. Maréchal CN, Albarède F (2002) Ion-exchange fractionation of copper and zinc isotopes. Geochim Cosmochim Acta 66(9):1499–1509CrossRefGoogle Scholar
  86. Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156(1–4):251–273CrossRefGoogle Scholar
  87. Maréchal CN, Nicolas E, Douchet C, Albarède F (2000) Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem Geophys Geosyst 1(1):1–15Google Scholar
  88. Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley S (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim Cosmochim Acta 69(22):5233–5246CrossRefGoogle Scholar
  89. MBARI (2012) Monterey Bay Aquarium Research Institute: periodic table of elements in the ocean.
  90. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120(3–4):223–253CrossRefGoogle Scholar
  91. McManus J, Nägler TF, Siebert C, Wheat CG, Hammond DE (2002) Oceanic molybdenum isotope fractionation: diagenesis and hydrothermal ridge-flank alteration. Geochem Geophys Geosyst 3(12):1–9CrossRefGoogle Scholar
  92. McMurtry GM, VonderHaar DL, Eisenhauer A, Mahoney JJ, Yeh HW (1994) Cenozoic accumulation history of a Pacific ferromanganese crust. Earth Planet Sci Lett 125:105–118CrossRefGoogle Scholar
  93. Miller CA, Peucker-Ehrenbrink B, Walker BD, Marcantonio F (2011) Re-assessing the surface cycling of molybdenum and rhenium. Geochim Cosmochim Acta 75:7146–7179CrossRefGoogle Scholar
  94. Millet MA, Baker JA, Payne CE (2012) Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe–58Fe double-spike. Chem Geol 304:18–25CrossRefGoogle Scholar
  95. Millot R, Guerrot C, Vigier N (2004) Accurate and high precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand Geoanal Res 28:153–159CrossRefGoogle Scholar
  96. Misra S, Froelich PN (2009) Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates. J Anal At Spectrom 24(11):1524–1533CrossRefGoogle Scholar
  97. Misra S, Froelich PN (2012) Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335:818–823CrossRefGoogle Scholar
  98. Nielsen SG, Rehkämper M, Baker J, Halliday AN (2004) The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem Geol 204(1–2):109–124CrossRefGoogle Scholar
  99. Nielsen SG, Rehkämper M, Teagle DAH, Butterfield DA, Alt JC, Halliday AN (2006) Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet Sci Lett 251:120–133CrossRefGoogle Scholar
  100. Nielsen SG, Mar-Gerrison S, Gannoun A, LaRowe D, Klemm V, Halliday AN, Burton KW, Hein JR (2009) Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene. Earth Planet Sci Lett 278:297–307CrossRefGoogle Scholar
  101. Nielsen SG, Gannoun A, Marnham C, Burton KW, Halliday AN, Hein JR (2011) New age for ferromanganese crust 109D-C and implications for isotopic records of lead, neodymium, hafnium, and thallium in the Pliocene Indian Ocean. Paleoceanography 26:1–23CrossRefGoogle Scholar
  102. Nielsen SG, Wasylenki LE, Rehkämper M (2013) Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 117:252–265CrossRefGoogle Scholar
  103. O’Nions RK, Frank M, von Blanckenburg F, Ling HF (1998) Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth Planet Sci Lett 155:15–28CrossRefGoogle Scholar
  104. Owens JD, Nielsen SG, Horner TJ (2017) Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochim Cosmochim Acta 213:291–307CrossRefGoogle Scholar
  105. Peacock CL, Moon EM (2012) Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim Cosmochim Acta 84:297–313CrossRefGoogle Scholar
  106. Peucker-Ehrenbrink B, Ravizza G, Hofmann AW (1995) The marine 187Os/186Os record of the past 80 million years. Earth Planet Sci Let 130:155–167CrossRefGoogle Scholar
  107. Ponthieu M, Juillot F, Hiemstra T, van Riemsdijk WH, Benedetti MF (2006) Metal ion binding to iron oxides. Geochim Cosmochim Acta 70:2679–2698CrossRefGoogle Scholar
  108. Radic A, Lacan F, Murray JW (2011) Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle. Earth Planet Sci Lett 306:1–10CrossRefGoogle Scholar
  109. Rehkämper M, Halliday AN (1999) The precise measurement of Tl isotopic compositions by MC-ICPMS: application to the analysis of geological materials and meteorites. Geochim Cosmochim Acta 63(6):935–944CrossRefGoogle Scholar
  110. Rehkämper M, Nielsen SG (2004) The mass balance of dissolved thallium in the oceans. Mar Chem 85:125–139CrossRefGoogle Scholar
  111. Rehkämper M, Frank M, Hein JR, Porcelli D, Halliday AN, Ingri J, Liebetrau V (2002) Thallium isotope variation sin seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet Sci Let 197:65–81CrossRefGoogle Scholar
  112. Rehkämper M, Frank M, Hein JR, Halliday AN (2004) Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth Planet Sci Lett 219:77–91CrossRefGoogle Scholar
  113. Riley JP, Tongudai M (1964) The lithium content of sea water. Deep-sea Res Oceanogr Abstr 11:563–568CrossRefGoogle Scholar
  114. Ripperger S, Rehkämper M (2007) Precise determination of cadmium isotope fractionation in seawater by double-spike MC-ICPMS. Geochim Cosmochim Acta 71:631–642CrossRefGoogle Scholar
  115. Ripperger S, Rehkämper M, Porcelli D, Halliday AN (2007) Cadmium isotope fractionation in seawater: a signature of biological activity. Earth Planet Sci Lett 261(3–4):670–684CrossRefGoogle Scholar
  116. Rose-Koga E, Albarede FA (2010) Data brief on magnesium isotope compositions of marine calcareous sediments and ferromanganese nodules. Geochem Geophys Geosyst 11(3):1–12CrossRefGoogle Scholar
  117. Rosenthal Y, Lam P, Boyle EA, Thomson J (1995) Authigenic cadmium enrichments in suboxic sediments: precipitation and post depositional mobility. Earth Planet Sci Lett 132(1–4):99–111CrossRefGoogle Scholar
  118. Saager PM, de Baar HJW, Howland RJ (1992) Cd, Zn, Ni and Cu in the Indian Ocean. Deep-Sea Res 39:9–35CrossRefGoogle Scholar
  119. Saager PM, de Baar HJW, de Jong JTM, Nolting RF, Schijf J (1997) Hydrography and local sources of dissolved trace metals Mn, Ni, Cu and Cd in the northeast Atlantic Ocean. Mar Chem 57:195–216CrossRefGoogle Scholar
  120. Schauble EA (2004) Applying stable isotope fractionation theory to new systems. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stable isotopes, reviews in mineralogy and geochemistry, vol 55. Mineralogical Society of America, Geochemical SocietyGoogle Scholar
  121. Schmitt AD, Galer SJG, Abouchami W (2009) Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment. Earth Planet Sci Lett 277(1–2):262–272CrossRefGoogle Scholar
  122. Sclater F, Boyle E, Edmond J (1976) On the marine geochemistry of nickel. Earth Planet Sci Lett 31:119–128CrossRefGoogle Scholar
  123. Shields WR, Murphy TJ, Garner EL (1964) Absolute isotopic abundance ratio and the atomic weight of a reference sample of copper. J Res NBS 68A:589–592CrossRefGoogle Scholar
  124. Siebert C, Nagler TF, von Blanckenburg F, Kramers JD (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett 211:159–171CrossRefGoogle Scholar
  125. Siebert J, Corgne A, Ryerson FJ (2011) Systematics of metal–silicate partitioning for many siderophile elements applied to Earth’s core formation. Geochim Cosmochim Acta 75:1451–1489CrossRefGoogle Scholar
  126. Simpson WR (1978) A critical review of Cadmium in the Marine environment. Prog Oceanogr 10(1):1–70CrossRefGoogle Scholar
  127. Sinoir M, Butler ECV, Bowie AR, Mongin M, Nesterenko PN, Hassler CS (2012) Zinc marine biogeochemistry in seawater: a review. Mar Freshwater Res 63:644–657CrossRefGoogle Scholar
  128. Takano S, Tanimizu M, Hirata T, Sohrin Y (2014) Isotopic constraints on biogeochemical cycling of copper in the ocean. Nat Commun 5:5663. CrossRefGoogle Scholar
  129. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific Publishing, OxfordGoogle Scholar
  130. Teng FZ, Wadhwa M, Helz RT (2007) Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett 261:84–92CrossRefGoogle Scholar
  131. Teng FZ, Dauphas N, Watkins JM (2017) Non-traditional stable isotopes: retrospective and prospective. Rev Mineral Geochem 82:1–26CrossRefGoogle Scholar
  132. Thompson CM, Ellwood MJ, Sander SG (2014) Dissolved copper speciation in the Tasman Sea, SW Pacific Ocean. Mar Chem 164:84–94CrossRefGoogle Scholar
  133. Tipper ET, Galy A, Gaillardet J, Bickle MJ, Elderfield H, Carder EA (2006) The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth Planet Sci Lett 250:241–253CrossRefGoogle Scholar
  134. Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Rev Mineral Geochem 55:153–195CrossRefGoogle Scholar
  135. Usui A, Nishi K, Satoa H, Nakasato Y, Thornton B, Kashiwabara T, Tokumaru A, Sakaguchi A, Yamaoka K, Kato S, Nitahara S, Suzuki K, Lijima K, Urabe T (2017) Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800–5500 m. Ore Geol Rev 87:71–87CrossRefGoogle Scholar
  136. Vance D, Archer C, Bermin J, Perkins J, Statham PJ, Lohan MC, Ellwood MJ, Mills RA (2008) The copper isotope geochemistry of rivers and the oceans. Earth Planet Sci Lett 274(1–2):204–213CrossRefGoogle Scholar
  137. Wasylenki LE, Weeks CL, Bargar JR, Spiro TG, Hein JR, Anbar AD (2011) The molecular mechanism of Mo isotope fractionation during adsorption to birnessite. Geochim Cosmochim Acta 75(17):5019–5031CrossRefGoogle Scholar
  138. Wieser ME, De Laeter JR, Varner MD (2007) Isotope fractionation studies of molybdenum. Internat J Mass Spec 265:40–48CrossRefGoogle Scholar
  139. Wilkinson BG, Algeo TJ (1989) Sedimentary carbonate record of calcium-magnesium cycling. Am J Sci 289(10):1158–1194CrossRefGoogle Scholar
  140. Xue ZC, Rehkämper M, Horner TJ, Abouchami W, Middag R, van de Flierdt T, de Baar HJW (2013) Cadmium isotope variations in the Southern Ocean. Earth Planet Sci Lett 382:161–172CrossRefGoogle Scholar
  141. Young ED, Galy A (2004) The isotope geochemistry and cosmochemistry of magnesium. Rev Mineral Geochem 55:197–230CrossRefGoogle Scholar
  142. Zhao Y, Vance D, Abouchami W, de Baar HJW (2014) Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim Cosmochim Acta 125:653–672CrossRefGoogle Scholar
  143. Zhu XK, O’Nions RK, Guo YL, Reynolds BC (2000) Secular variation of iron isotopes in north Atlantic deep water. Science 287:2000–2002CrossRefGoogle Scholar
  144. Zhu XK, Guo Y, O’Nions RK, Young ED, Ash RD (2001) Isotopic homogeneity of iron in the early solar nebula. Nature 412:311–313CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Ore Deposit Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina

Personalised recommendations