High diversity of haptophytes in the East China Sea revealed by next-generation sequencing and scanning electron microscopy

  • Chi-Yu Shih
  • Hsing-Ming Lu
  • Gwo-Ching Gong
  • Lee-Kuo KangEmail author
Original Article


Haptophytes are a major marine microbial eukaryote group and play important roles in the marine ecosystem. To explore the phylogenetic diversity in haptophyte communities at high sequencing depths, we performed next-generation sequencing (NGS) to investigate the haptophyte community diversity in the East China Sea (ECS) during the summer of 2013. After clustering at 99% similarity, a total of 159 unique operational taxonomic units were detected. All major haptophyte groups, including several novel environmental lineages, were retrieved in the ECS. Chrysochromulinaceae and Phaeocystales represented the most important components of the haptophyte summer community. Our results indicated the existence of high haptophyte diversity and novel haptophyte lineages in the ECS. A comparison between the results from NGS and scanning electron microscopy (SEM) with respect to species diversity and the proportional abundance of coccolithophores showed that NGS had the power to explore overall community diversity, and SEM was capable of a high level of taxonomic resolution to distinguish closely related species with similar 18S rDNA sequences. The NGS method combined with the SEM method could provide comprehensive information for understanding the abundance and distribution of haptophytes in the ocean.


Haptophytes Coccolithophores 18S rDNA Phylogeny Richness East China Sea Next-generation sequencing Scanning electron microscopy 



We are grateful to the captain and crew of the R/V Ocean Researcher I. This research was supported by the Ministry of Science and Technology Grant of MOST 107-2611-M-019-009. C.-Y. Shih was supported by a MOST postdoctoral fellowship (MOST 106-2811-M-019-001).

Supplementary material

10872_2019_505_MOESM1_ESM.xls (34 kb)
Supplementary material 1 (XLS 34 kb)
10872_2019_505_MOESM2_ESM.xlsx (27 kb)
Supplementary material 2 (XLSX 27 kb)
10872_2019_505_MOESM3_ESM.pdf (677 kb)
Supplementary material 3 (PDF 677 kb)


  1. Bittner L, Gobet A, Audic S, Romac S, Egge ES, Santini S et al (2013) Diversity patterns of uncultured Haptophytes unravelled by pyrosequencing in Naples Bay. Mol Ecol 22(1):87–101. CrossRefGoogle Scholar
  2. Bollmann J, Cortés MY, Haidar AT, Brabec B, Close A, Hofmann R et al (2002) Techniques for quantitative analyses of calcareous marine phytoplankton. Mar Micropaleontol 44(3–4):163–185. CrossRefGoogle Scholar
  3. Chen YQ, Wang N, Zhang P, Zhou H, Qu LH (2002) Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa. Biochem Syst Ecol 30(1):15–22. CrossRefGoogle Scholar
  4. Clark CG (1992) DNA purification from polysaccharide-rich cells. In: Lee JJ, Soldo AT (eds) Protocol in protozoology. Society of Protozoology, Lawrence, pp 1–2 (D-3)Google Scholar
  5. Clarke KR, Gorley RN (2015) PRIMER v7 User manual/tutorial. PRIMER-E, Plymouth, p 296Google Scholar
  6. Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366(1–2):56–69. CrossRefGoogle Scholar
  7. Cros L, Fortuño JM (2002) Atlas of northwestern Mediterranean coccolithophores. Sci Mar 66(S1):1–182. CrossRefGoogle Scholar
  8. Cuvelier ML, Allen AE, Monier A, McCrow JP, Messié M, Tringe SG et al (2010) Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc Natl Acad Sci USA 107(33):14679–14684. CrossRefGoogle Scholar
  9. Dahl E, Bagøien E, Edvardsen B, Stenseth NC (2005) The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions. J Sea Res 54(1):15–24. CrossRefGoogle Scholar
  10. de Vargas C, Aubry M-P, Probert IAN, Young J (2007) Origin and evolution of coccolithophores: from coastal hunters to oceanic farmers. In: Falkowski P, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Burlington, pp 251–285CrossRefGoogle Scholar
  11. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R et al (2015) Ocean plankton. Science 348(6237):1261605. CrossRefGoogle Scholar
  12. Dunthorn M, Otto J, Berger SA, Stamatakis A, Mahé F, Romac S et al (2014) Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol Biol Evol 31(4):993–1009. CrossRefGoogle Scholar
  13. Edvardsen B, Imai I (2006) The ecology of harmful flagellates within Prymnesiophyceae and Raphidophyceae. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 67–79CrossRefGoogle Scholar
  14. Edvardsen B, Paache E (1998) Bloom dynamics and physiology of Prymnesium and Chrysochromulina. NATO ASI Ser G Ecol Sci 41:193–208Google Scholar
  15. Edvardsen B, Eikrem W, Green JC, Andersen RA, Staay SYM-VD, Medlin LK (2000) Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia 39(1):19–35. CrossRefGoogle Scholar
  16. Edvardsen B, Eikrem W, Throndsen J, Sáez AG, Probert I, Medlin LK (2011) Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta). Eur J Phycol 46(3):202–228. CrossRefGoogle Scholar
  17. Edvardsen B, Egge ES, Vaulot D (2016) Diversity and distribution of haptophytes revealed by environmental sequencing and metabarcoding? A review. Perspect Phycol 3(2):77–91. CrossRefGoogle Scholar
  18. Egge E, Bittner L, Andersen T, Audic S, de Vargas C, Edvardsen B (2013) 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes. PLoS One 8(9):e74371. CrossRefGoogle Scholar
  19. Egge ES, Eikrem W, Edvardsen B (2015a) Deep-branching novel lineages and high diversity of haptophytes in the Skagerrak (Norway) uncovered by 454 pyrosequencing. J Eukaryot Microbiol 62(1):121–140. CrossRefGoogle Scholar
  20. Egge ES, Johannessen TV, Andersen T, Eikrem W, Bittner L, Larsen A et al (2015b) Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Mol Ecol 24(12):3026–3042. CrossRefGoogle Scholar
  21. Frada M, Not F, Probert I, De Vargas C (2006) CaCO3 optical detection with fluorescent in situ hybridization: a new method to identify and quantify calcifying microorganisms from the oceans. J Phycol 42(6):1162–1169. CrossRefGoogle Scholar
  22. Frias-Lopez J, Thompson A, Waldbauer J, Chisholm SW (2009) Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ Microbiol 11(2):512–525. CrossRefGoogle Scholar
  23. Furuya K, Hayashi M, Yabushita Y, Ishikawa A (2003) Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep Sea Res Part II Top Stud Oceanogr 50(2):367–387. CrossRefGoogle Scholar
  24. Gjøsæter J, Lekve K, Stenseth NC, Leinaas HP, Christie H, Dahl E et al (2000) A long-term perspective on the Chrysochromulina bloom on the Norwegian Skagerrak coast 1988: a catastrophe or an innocent incident? Mar Ecol Prog Ser 207:201–218. CrossRefGoogle Scholar
  25. Gong GC, Lee Chen YL, Liu KK (1996) Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Cont Shelf Res 16(12):1561–1590. CrossRefGoogle Scholar
  26. Gong GC, Shiah FK, Liu KK, Wen YH, Liang MH (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Cont Shelf Res 20(4–5):411–436. CrossRefGoogle Scholar
  27. Granéli E, Edvardsen B, Roelke DL, Hagström JA (2012) The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae 14:260–270. CrossRefGoogle Scholar
  28. Gran-Stadniczenko S, Supraha L, Egge ED, Edvardsen B (2017) Haptophyte diversity and vertical distribution explored by 18S and 28S ribosomal RNA gene metabarcoding and scanning electron microscopy. J Eukaryot Microbiol 64(4):514–532. CrossRefGoogle Scholar
  29. Hagino K, Young JR, Bown PR, Godrijan J, Kulhanek DK, Kogame K et al (2015) Re-discovery of a “living fossil” coccolithophore from the coastal waters of Japan and Croatia. Mar Micropaleontol 116:28–37. CrossRefGoogle Scholar
  30. Hansen PJ, Hjorth M (2002) Growth and grazing responses of Chrysochromulina ericina (Prymnesiophyceae): the role of irradiance, prey concentration and pH. Mar Biol 141(5):975–983. CrossRefGoogle Scholar
  31. Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ et al (2012) Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Nat Acad Sci USA 109(15):5756–5760. CrossRefGoogle Scholar
  32. Hugerth LW, Muller EE, Hu YO, Lebrun LA, Roume H, Lundin D et al (2014) Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS One 9(4):e95567. CrossRefGoogle Scholar
  33. Iglesias-Rodriguez MD, Halloran PR, Rickaby RE, Hall IR, Colmenero-Hidalgo E, Gittins JR et al (2008) Phytoplankton calcification in a high-CO2 world. Science 320(5874):336–340. CrossRefGoogle Scholar
  34. Jardillier L, Zubkov MV, Pearman J, Scanlan DJ (2010) Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J 4:1180–1192. CrossRefGoogle Scholar
  35. Jones HLJ, Leadbeater BSC, Green JC (1994) Mixotrophy in haptophytes. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon, Oxford, pp 247–263Google Scholar
  36. Kang LK, Lu HM, Sung PT, Chan YF, Lin YC, Gong GC et al (2016) The summer distribution of coccolithophores and its relationship to water masses in the East China Sea. J Oceanogr 72(6):883–893. CrossRefGoogle Scholar
  37. Kataoka T, Yamaguchi H, Sato M, Watanabe T, Taniuchi Y, Kuwata A et al (2017) Seasonal and geographical distribution of near-surface small photosynthetic eukaryotes in the western North Pacific determined by pyrosequencing of 18S rDNA. FEMS Microbiol Ecol 93(2):fiw229. CrossRefGoogle Scholar
  38. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120. CrossRefGoogle Scholar
  39. Lekve K, Bagoien E, Dahl E, Edvardsen B, Skogen M, Stenseth NC (2006) Environmental forcing as a main determinant of bloom dynamics of the Chrysochromulina algae. Proc Biol Sci 273(1605):3047–3055. CrossRefGoogle Scholar
  40. Lin YC, Chung CC, Gong GC, Chiang KP (2014) Diversity and abundance of haptophytes in the East China Sea. Aquat Microb Ecol 72(3):227–240. CrossRefGoogle Scholar
  41. Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, Frada M et al (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Nat Acad Sci USA 106(31):12803–12808. CrossRefGoogle Scholar
  42. Luan Q, Liu S, Zhou F, Wang J (2016) Living coccolithophore assemblages in the Yellow and East China Seas in response to physical processes during fall 2013. Mar Micropaleontol 123:29–40. CrossRefGoogle Scholar
  43. Mahé F, Mayor J, Bunge J, Chi J, Siemensmeyer T, Stoeck T et al (2015) Comparing high-throughput platforms for sequencing the V4 region of SSU-rDNA in environmental microbial eukaryotic diversity surveys. J Eukaryot Microbiol 62(3):338–345. CrossRefGoogle Scholar
  44. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnrt J 17(1):10–12. CrossRefGoogle Scholar
  45. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform 13:31. CrossRefGoogle Scholar
  46. Moestrup Ø, Thomsen HA (2003) Taxonomy of toxic haptophytes (prymnesiophytes). In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 433–463Google Scholar
  47. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409(6820):607–610. CrossRefGoogle Scholar
  48. Not F, del Campo J, Balague V, de Vargas C, Massana R (2009) New insights into the diversity of marine picoeukaryotes. PLoS One 4(9):e7143. CrossRefGoogle Scholar
  49. Pai SC, Yang CC, Riley JP (1990) Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Anal Chim Acta 229:115–120. CrossRefGoogle Scholar
  50. Pernice MC, Logares R, Guillou L, Massana R (2013) General patterns of diversity in major marine microeukaryote lineages. PLoS One 8(2):e57170. CrossRefGoogle Scholar
  51. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):590–596. Google Scholar
  52. Quéré CL, Harrison SP, Colin Prentice I, Buitenhuis ET, Aumont O, Bopp L et al (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Change Biol 11(11):2016–2040. Google Scholar
  53. Sáez AG, Probert I, Young JR, Edvardsen B, Eikrem W, Medlin LK (2004) A review of the phylogeny of the Haptophyta. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 251–269CrossRefGoogle Scholar
  54. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. CrossRefGoogle Scholar
  55. Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53(1–2):43–66. CrossRefGoogle Scholar
  56. Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D (2009) Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLoS One 4(10):e7657. CrossRefGoogle Scholar
  57. Simon M, López-García P, Moreira D, Jardillier L (2013) New haptophyte lineages and multiple independent colonizations of freshwater ecosystems. Environ Microbiol Rep 5(2):322–332. CrossRefGoogle Scholar
  58. Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW et al (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(S1):21–31. CrossRefGoogle Scholar
  59. Sun J, Gu XY, Feng YY, Jin SF, Jiang WS, Jin HY et al (2014) Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences 11(3):779–806. CrossRefGoogle Scholar
  60. Unrein F, Gasol JM, Not F, Forn I, Massana R (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8(1):164–176. CrossRefGoogle Scholar
  61. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992. CrossRefGoogle Scholar
  62. Winter A, Siesser WG (1994) Atlas of living coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, New York, pp 107–159Google Scholar
  63. Wu W, Huang B, Liao Y, Sun P (2014) Picoeukaryotic diversity and distribution in the subtropical-tropical South China Sea. FEMS Microbiol Ecol 89(3):563–579. CrossRefGoogle Scholar
  64. Yang TN, Wei KY, Chen MP, Ji SJ, Gong GC, Lin FJ et al (2004) Summer and winter distribution and malformation of coccolithophores in the East China Sea. Micropaleontology 50(S1):157–170. CrossRefGoogle Scholar
  65. Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68(12):5804–5815. CrossRefGoogle Scholar
  66. Young JR, Geisen M, Cros L, Kleijne A, Sprengel C, Probert I et al (2003) A guide to extant coccolithophore taxonomy. J Nannoplankton Res 25:1–125CrossRefGoogle Scholar
  67. Young JR, Liu H, Probert I, Aris-Brosou S, Vargas Cd (2014) Morphospecies versus phylospecies concepts for evaluating phytoplankton diversity: the case of the coccolithophores. Cryptogam Algol 35(4):353–377. CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan, ROC
  2. 2.Institute of Marine Environment and EcologyNational Taiwan Ocean UniversityKeelungTaiwan, ROC
  3. 3.Center of Excellence for the OceansNational Taiwan Ocean UniversityKeelungTaiwan, ROC
  4. 4.Bachelor Degree Program in Marine BiotechnologyNational Taiwan Ocean UniversityKeelungTaiwan, ROC

Personalised recommendations