Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Trivalent Holmium in an Octahedral Cl3O3 Environment: Synthesis, Crystal Structure and Hirshfeld Surfaces of Coordination Compound with 2,2,2-Trichloro-N-(dimorpholinophosphoryl)acetamide

Abstract

The reaction of HoCl3·6H2O with 2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide (carbacylamidophosphate (CAPh) type ligand, C10Cl3H8N3O4P, HL) in acetone-isopropanolic solution produces the title coordination compound [Ho(HL)2(H2O)Cl3] (1). The complex with a low for lanthanides coordination number 6 crystallizes in the triclinic space group P \(\overline{1}\). The unit cell parameters are a = 11.0587(11) Å, b = 14.2224(12) Å, c = 14.2520(11) Å, α = 116.192(9)°, β = 104.170(8)°, γ = 91.342 (8)°, V = 1927.8(3) Å3 and Z = 2. The HoIII ion is octahedrally coordinated by three chlorine ions, two O atoms of CAPh ligands phosphoryl groups and one O atom of water molecule. The [Ho(HL)2(H2O)Cl3] molecules are linked via Owater–H⋯Omorpholine hydrogen bonds, forming chains along [100] crystallographic direction. These chains are bound into a three-dimensional framework due to the Cmorpholine–H⋯Cl intermolecular hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to identify the intermolecular interactions presented in the crystal.

Graphic Abstract

The X-ray structure of hexacoordinate holmium(III) complex with the carbacylamidophosphate (CAPh) ligand 2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide (CCl3C(O)N(H)P(O)[N(CH2)4O]2) is reported and compare with the similar complex structures. Hirshfeld surface analysis employed to identify intermolecular interactions within the structure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Bünzli J-CG (2014) Review: lanthanide coordination chemistry: from old concepts to coordination polymers. J Coord Chem 23–24:3706–3733. https://doi.org/10.1080/00958972.2014.957201

  2. 2.

    Reddy MLP, Divya V, Pavithran R (2013) Visible-light sensitized luminescent europium(III)-β-diketonate complexes: bioprobes for cellular imaging. Dalton Trans 42:15249–15262. https://doi.org/10.1039/C3DT52238E

  3. 3.

    Bünzli J-CG, Wong K-L (2018) Lanthanide mechanoluminescence. J Rare Earths 36:1–41. https://doi.org/10.1016/j.jre.2017.09.005

  4. 4.

    Ramos TJS, Berton GH, Júnior SA, Cassol TM (2019) Photostable soft materials with tunable emission based on sultone functionalized ionic liquid and lanthanides ions. J Lumin 209:208–216. https://doi.org/10.1016/j.jlumin.2019.01.007

  5. 5.

    Kasprzycka E, Trush VA, Amirkhanov VM, Jerzykiewicz L, Malta OL, Legendziewicz J, Gawryszewska P (2017) Contribution of energy transfer from the singlet state to the sensitization of Eu3+ and Tb3+ luminescence by sulfonylamidophosphates. Chem Eur J 23:1318–1330. https://doi.org/10.1002/chem.201603767

  6. 6.

    Mariichak OYu, Rozantsev GM, Radio SV (2017) Synthesis and investigation of heteropoly decatungstosamarates(III) with anion of Peacock-Weakley structure. Voprosy Khimii i Khimicheskoi Tekhnologii 2017–6:23–31 https://udhtu.edu.ua/public/userfiles/file/VHHT/2017/6/Mariichak.pdf

  7. 7.

    Døssing A, Kadziola A, Gawryszewska P, Watras A, Melchior A (2017) Structure, stability and spectroscopic features of the neodymium(III) complex of the octadentate polypyridine ligand 6,6′-bis[bis(2-pyridylmethyl)aminomethyl]-2.2′-bipyridine. Inorg Chim Acta 467:93–98. https://doi.org/10.1016/j.ica.2017.07.040

  8. 8.

    Smola S, Rusakova N, Martsinko E, Seifullina I, Korovin Y (2007) Spectroscopic properties of the Ln–Ge complexes with diethylenetriaminepentaacetic acid. Chem J Moldova 2:83–87. https://doi.org/10.19261/cjm.2007.02(1).10

  9. 9.

    Kariaka N, Litsis O, Kolomzarov Y, Gawryszewska P, Smola S, Rusakova N, Trush V, Sliva T, Amirkhanov V (2018) Luminescent thin films based on N-(diphenylphosphoryl)benzamide Eu III and Tb III complexes for light emitting diode technology. Chem J Moldova 13:54–62. https://doi.org/10.19261/cjm.2018.473

  10. 10.

    Skopenko VV, Amirkhanov VM, Sliva TYu, Vasilchenko IS, Anpilova EL, Garnovskii AD (2004) Various types of metal complexes based on chelating β-diketones and their structural analogues. Russ Chem Rev 8:737–752

  11. 11.

    Gawryszewska P, Sokolnicki J, Legendziewicz J (2005) Photophysics and structure of selected lanthanide compounds. Coordin Chem Rev 249:2489–2509. https://doi.org/10.1016/j.ccr.2005.06.021

  12. 12.

    Olyshevets IP, Dyakonenko VV, Shyshkina SV, Trush VO, Sliva TYu, Amirkhanov VM (2018) Synthesis, structural and spectral studies of anionic tetrakis-complexes of lanthanides CsLNL4 with SAPh-ligand: dimethyl(phenylsulfonyl)amidophosphate. Voprosy khimii i khimicheskoi tekhnologii 6:56–62. https://doi.org/10.32434/0321-4095-2018-121-6-56-62

  13. 13.

    Savchenko I, Berezhnytska A, Fedorov Y, Trunova E (2014) Copolymers of rare earth elements complexes with unsaturated β-diketones and N-vinylcarbazole for OLEDs. Mol Cryst Liq Cryst 590:49–57. https://doi.org/10.1080/15421406.2013.873847

  14. 14.

    Savchenko I, Berezhnytska A, Smola S, Ivakha N (2013) Synthesis and characterization of copolymers of lantanide complexes with styrene. French-Ukrainian J Chem 1:94–99

  15. 15.

    Amirkhanov V, Ovchynnikov V, Trush V, Gawryszewska P, Jerzykiewicz LB (2014) Powerful new ligand systems: carbacylamidophosphates (CAPh) and sulfonylamidophosphates (SAPh) in ligands. Synthesis, characterization and role in biotechnology. NOVA Publishers, New York, ISBN-13: 978-1631171437

  16. 16.

    Dorosti N, Delfan B, Gholivand K, Ebrahimi-Valmoozi AA (2016) Synthesis, crystal structure, biological evaluation, electronic aspects of hydrogen bonds, and QSAR studies of some new N-(substituted phenylurea) diazaphosphore derivatives as anticancer agents. Med Chem Res 25:769–789. https://doi.org/10.1007/s00044-016-1527-9

  17. 17.

    Vahdani Alviri B, Pourayoubi M, Saneei A, Keikha M, van der Lee A, Crochet A et al (2018) Puckering behavior in six new phosphoric triamides containing aliphatic six- and seven-membered ring groups and a database survey of analogous ring-containing structures. Tetrahedron 74:28–41. https://doi.org/10.1016/j.tet.2017.11.030

  18. 18.

    Oroujzadeh N, Gholivand K, Jamalabadi NR (2017) New carbacylamidophosphates containing nicotinamide: synthesis, crystallography and antibacterial activity. Polyhedron 122:29–38. https://doi.org/10.1016/j.poly.2016.10.024

  19. 19.

    Grynyuk II, Prylutska SV, Kariaka NS, Sliva TY, Moroz OV, Franskevych DV, Amirkhanov VM, Matyshevska OP, Slobodyanik MS (2015) Computer prediction of biological activity of dimethyl-N-(benzoyl)amidophosphate and dimethyl-N-(phenylsulfonyl)amidophosphate, evaluation of their cytotoxic activity against leukemia cells in vitro. Ukr Biokhim Zh+ 6:154–161. https://doi.org/10.15407/ubj87.06.154

  20. 20.

    Jaroslav K, Swerdloff F (1985) N-acyl phosphoric triamide urease inhibitors and urease inhibited urea based fertilizer compositions. USA Patent No. 4517003A

  21. 21.

    Grimes KD, Lu Y-J, Zhang Y-M, Luna VA, Hurdle JG, Carson EI, Qi J, Kudrimoti S, Rock ChO, Lee RE (2008) Novel acyl phosphate mimics that target PlsY, an essential acyltransferase in gram-positive bacteria. ChemMedChem 12:1936–1945. https://doi.org/10.1002/cmdc.200800218

  22. 22.

    Amirkhanov V, Ovchinnikov V, Legendziewicz J, Graczyk A, Hanuza J, Macalik L (1996) Spectroscopic studies of neodymium and europium phosphoro-azo β-diketonates. Acta Phys Pol A 90:455–460. https://doi.org/10.12693/APhysPolA.90.455

  23. 23.

    Litsis OO, Shatrava IO, Amirkhanov OV, Ovchynnikov VA, Sliva TYu, Shishkina SV, Dyakonenko VV, Shishkin OV, Amirkhanov VM (2016) New carbacylamidophosphates (CAPh) and CAPh-containing coordination compounds: structural peculiarities. Struct Chem 1:341–355. https://doi.org/10.1007/s11224-015-0701-x

  24. 24.

    Kariaka NS, Trush VA, Medviediev VV, Dyakonenko VV, Shishkin OV, Smola SS, Fadeyev EM, Rusakova NV, Amirkhanov VM (2016) Coordination compounds based on CAPh type ligand: synthesis, structural characteristics and luminescence properties of tetrakis-complexes CsLnL4 with dimethylbenzoylamidophosphate. J Coord Chem 1:123–134. https://doi.org/10.1080/00958972.2015.1115024

  25. 25.

    Tananaev IG, Letyushov AA, Safiulina AM, Goryunova IB, Glibov LA, Myasoedov BF (2008) Search strategy for new efficient organophosphorus extractants for concentrating radionuclides. Dokl Chem 422:260–264. https://doi.org/10.1134/S0012500808100054

  26. 26.

    Yizhak RV, Znovjyak KO, Ovchynnikov VA, Sliva TY, Konovalova IS, Medviediev VV, Shishkin OV, Amirkhanov VM (2013) Synthesis and crystal structures of new dioxouranium(VI) complexes based on carbacylamidophosphates (CAPh). Investigation of extraction properties of some CAPh ligands in respect of dioxouranium(VI) nitrate. Polyhedron 62:293–299. https://doi.org/10.1016/j.poly.2013.06.043

  27. 27.

    Yakovlev OO, Kariaka NS, Trush VA, Smola SS, Siczek M, Amirkhanov VM (2018) Luminescent properties and structure of new CAPh-based lanthanide complexes [LnL3Q], containing additional bis-heterocyclic aromatic ligand-antenna 2-(1,3,4-oxadiazole-2-yl)pyridine. Opt Mater 75:459–464. https://doi.org/10.1016/j.optmat.2017.10.044

  28. 28.

    Zhang W, Tan M, Liu W, Yu K (1992) Synthesis and structure of N-(O,O-diethylphosphoryl)-N′-benzoylurea samarium perchlorate complex. Polyhedron 11:1581–1585. https://doi.org/10.1016/S0277-5387(00)83710-9

  29. 29.

    Gubina KE, Maslov OA, Trush EA, Trush VA, Ovchynnikov VA, Shishkina SV, Amirkhanov VM (2009) Novel heteroligand complexes of Co(II), Cu(II), Ni(II) and Mn(II) formed by 2,2′-dipyridyl or 1,10-phenanthroline and phosphortriamide ligands: synthesis and structure. Polyhedron 28:2661–2666. https://doi.org/10.1016/j.poly.2009.06.004

  30. 30.

    Trush VA, Domasevitch KV, Amirkhanov VM, Sieler J (1999) Structure of Tl(18-crown-6){Cl3CC(O)NP(O)(OCH3)2}: coordination of the ionic multidentate weakens the interaction of the metal atom with the crown ether. Z Naturforsch Pt B 54:451–455

  31. 31.

    Litsis O, Sliva TY, Kolomzarov YV, Minakova IE, Amirkhanov VM (2016) Nanodimension thin films based on lanthanide coordination compound for light-emitting devices. CAOL Proc Intl Conf Adv Optoelectron Lasers. https://doi.org/10.1109/CAOL.2016.7851409

  32. 32.

    Litsis OO, Ovchynnikov VA, Shishkina SV, Sliva TY, Amirkhanov VM (2013) Dinuclear 3D metal complexes based on a carbacylamidophosphate ligand: redetermination of the ligand crystal structure. Transit Metal Chem 38:473–479. https://doi.org/10.1007/s11243-013-9713-9

  33. 33.

    Gholivand K, Salami R, Shahsavari Z, Torabi E (2016) Novel binuclear and polymeric diorganotin(IV) complexes with N-nicotinylphosphoramides: synthesis, characterization, structural studies and anticancer activity. J Organomet Chem 819:155–165. https://doi.org/10.1016/j.jorganchem.2016.05.008

  34. 34.

    Znovjyak KO, Ovchynnikov VA, Moroz OV, Shishkina SV, Amirkhanov VM (2010) Bis{N-[bis­(pyrrolidin-1-yl)phosphor­yl]-2,2,2-trichloro­acetamide}di­nitrato­dioxidouranium(VI). Acta Crystallogr E E 66:m322. https://doi.org/10.1107/S1600536810006422

  35. 35.

    Shatrava I, Gubina K, Ovchynnikov V, Dyakonenko V, Amirkhanov V (2016) Crystal structure of aquatris-μ-N-[bis(diethylamino)phosphoryl]-2,2,2-trichloroacetamidato-κ3O, O':O}calciumsodium. Acta Crystallogr E 72:1683–1686. https://doi.org/10.1107/S2056989016017035

  36. 36.

    Schwarzenbach G, Flaschka H (1969) Complexometric titrations. Methuen, London

  37. 37.

    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C C71:3–8. https://doi.org/10.1107/S2053229614024218

  38. 38.

    Kirsanov AV, Derkach GI (1955) Trichlorophosphazotrichloroacetyl chloride and cloro anhydride of N-phosphoric acid trichloroiminoacetyl chloride. Zh Obshch Khim+ 2009–2014 (in Russian)

  39. 39.

    Ovchynnikov VA, Amirkhanov VM, Timoshenko TP, Glowiak T, Kozlowski H (1998) Carbacylamidophosphates: synthesis, properties, and structure of dimorfolido-N-trichloroacetylphosphorylamide. Z Naturforsch Pt B 53:481–484

  40. 40.

    Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer 3.0. University of Western Australia, Perth

  41. 41.

    Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. Cryst Eng Comm 11:19–32. https://doi.org/10.1039/B818330A

  42. 42.

    Znovjyak KO, Ovchynnikov VA, Shishkina SV, Sliva TYu, Amirkhanov VM (2010) Tris{N-[bis(pyrrolidin-1-yl)phosphoryl]-2,2,2-trichloroacetamide}trichloridoerbium(III). Acta Crystallogr 66:m447. https://doi.org/10.1107/S1600536810010408

  43. 43.

    Amirkhanov VM, Ovchynnikov VA, Kapshuk AA, Skopenko VV (1995) Synthesis and study of coordination compounds of rare-earth chlorides with bis(diethylamido)trichloroacetylamidophosphoric acid. Russ J Inorg Chem+ 40:1800–1804 (in Russian)

  44. 44.

    Litsis O, OvchynnikovV. Sliva T, Shishkina S, Amirkhanov V (2018) Lanthanide coordination compounds with monodentate coordinated β-diketone heteroanalogue—(2,2,2-trichloro-N-(dipiperidin-1-yl-phosphoryl)acetamide: synthesis and spectral investigations. Chem J Moldova. General, Industrial and Ecological Chemistry 13:15–23. https://dx.doi.org/10.19261/cjm.2017.466

  45. 45.

    Znovjyak KO, Moroz OV, Ovchynnikov VA, Sliva TYu, Shishkina SV, Amirkhanov VM (2009) Synthesis and investigations of mixed-ligand lanthanide complexes with N,N′-dipyrrolidine-N′′-trichloracetylphosphortriamide, dimethyl-N-trichloracetylamidophosphate, 1,10-phenanthroline and 2,2′-bipyrimidine. Polyhedron 28:3731–3738. https://doi.org/10.1016/j.poly.2009.08.017

  46. 46.

    Gholivand K, Alizadehgan AM, Arshadi S, Firooz AA (2006) Conformational, structural analysis and vibrational spectra of a new carbacylamidophosphate compound: experimental and theoretical study. J Mol Struct 791:193–200. https://doi.org/10.1016/j.molstruc.2006.01.029

  47. 47.

    Amirkhanov VM, Ovchinnikov VA, Trush VA, Skopenko VV (1996) Properties and structure of bis(diethylamido)trichloracethylamido phosphoric acid. Zh Org Khim+ 32:376–380 (in Russian)

  48. 48.

    Radonovich LJ, Glick MD (1973) Structure of a six-coordinate rare earth complex: trichlorotris(hexamethylphosphoramide)praseodymium(III). J Inorg Nucl Chem 35:2745–2752. https://doi.org/10.1016/0022-1902(73)80505-6

Download references

Author information

Correspondence to Olena O. Litsis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 61 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Litsis, O.O., Ovchynnikov, V.A., Dyakonenko, V.V. et al. Trivalent Holmium in an Octahedral Cl3O3 Environment: Synthesis, Crystal Structure and Hirshfeld Surfaces of Coordination Compound with 2,2,2-Trichloro-N-(dimorpholinophosphoryl)acetamide. J Chem Crystallogr (2020). https://doi.org/10.1007/s10870-020-00823-8

Download citation

Keywords

  • Ho3+ complex
  • Carbacylamidophosphate
  • Phosphoryl ligand
  • Six-coordinate geometry
  • Hirshfeld surface analysis
  • Fingerprint plots